These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 23168078)
1. Ultrasound field distribution and ultrasonic oxidation desulfurization efficiency. Liu L; Wen J; Yang Y; Tan W Ultrason Sonochem; 2013 Mar; 20(2):696-702. PubMed ID: 23168078 [TBL] [Abstract][Full Text] [Related]
2. The influence of air content in water on ultrasonic cavitation field. Liu L; Yang Y; Liu P; Tan W Ultrason Sonochem; 2014 Mar; 21(2):566-71. PubMed ID: 24230967 [TBL] [Abstract][Full Text] [Related]
3. Model processes and cavitation indicators for a quantitative description of an ultrasonic cleaning vessel: Part I: experimental results. Jüschke M; Koch C Ultrason Sonochem; 2012 Jul; 19(4):787-95. PubMed ID: 22261472 [TBL] [Abstract][Full Text] [Related]
4. Studies of a novel sensor for assessing the spatial distribution of cavitation activity within ultrasonic cleaning vessels. Zeqiri B; Hodnett M; Carroll AJ Ultrasonics; 2006 Jan; 44(1):73-82. PubMed ID: 16213538 [TBL] [Abstract][Full Text] [Related]
5. Observations of cavitation erosion pit formation. Dular M; Delgosha OC; Petkovšek M Ultrason Sonochem; 2013 Jul; 20(4):1113-20. PubMed ID: 23403307 [TBL] [Abstract][Full Text] [Related]
6. Comparison of measured acoustic power results gained by using three different methods on an ultrasonic low-frequency device. Petosić A; Svilar D; Ivancević B Ultrason Sonochem; 2011 Mar; 18(2):567-76. PubMed ID: 20850368 [TBL] [Abstract][Full Text] [Related]
7. Influence of sound directions on acoustic field characteristics within a rectangle-shaped sonoreactor: Numerical simulation and experimental study. Zhang Z; Gao T; Liu X; Li D; Zhao J; Lei Y; Wang Y Ultrason Sonochem; 2018 Apr; 42():787-794. PubMed ID: 29429732 [TBL] [Abstract][Full Text] [Related]
8. Precise spatial control of cavitation erosion in a vessel phantom by using an ultrasonic standing wave. Shi A; Huang P; Guo S; Zhao L; Jia Y; Zong Y; Wan M Ultrason Sonochem; 2016 Jul; 31():163-72. PubMed ID: 26964937 [TBL] [Abstract][Full Text] [Related]
9. Cavitation erosion mechanism of titanium alloy radiation rods in aluminum melt. Dong F; Li X; Zhang L; Ma L; Li R Ultrason Sonochem; 2016 Jul; 31():150-6. PubMed ID: 26964935 [TBL] [Abstract][Full Text] [Related]
10. The cavitation erosion of ultrasonic sonotrode during large-scale metallic casting: Experiment and simulation. Tian Y; Liu Z; Li X; Zhang L; Li R; Jiang R; Dong F Ultrason Sonochem; 2018 May; 43():29-37. PubMed ID: 29555286 [TBL] [Abstract][Full Text] [Related]
11. Ultrasound-assisted oxidative process for sulfur removal from petroleum product feedstock. Mello Pde A; Duarte FA; Nunes MA; Alencar MS; Moreira EM; Korn M; Dressler VL; Flores EM Ultrason Sonochem; 2009 Aug; 16(6):732-6. PubMed ID: 19349204 [TBL] [Abstract][Full Text] [Related]
12. Investigation of spatial distribution of sound field parameters in ultrasound cleaning baths under the influence of cavitation. Jenderka KV; Koch C Ultrasonics; 2006 Dec; 44 Suppl 1():e401-6. PubMed ID: 16781752 [TBL] [Abstract][Full Text] [Related]
13. Developing high intensity ultrasonic cleaning (HIUC) for post-processing additively manufactured metal components. Tan WX; Tan KW; Tan KL Ultrasonics; 2022 Dec; 126():106829. PubMed ID: 35998399 [TBL] [Abstract][Full Text] [Related]
14. Cavitation at filler metal/substrate interface during ultrasonic-assisted soldering. Part II: Cavitation erosion effect. Li Z; Xu Z; Ma L; Wang S; Liu X; Yan J Ultrason Sonochem; 2019 Jan; 50():278-288. PubMed ID: 30274890 [TBL] [Abstract][Full Text] [Related]
15. Sono-leather technology with ultrasound: a boon for unit operations in leather processing - review of our research work at Central Leather Research Institute (CLRI), India. Sivakumar V; Swaminathan G; Rao PG; Ramasami T Ultrason Sonochem; 2009 Jan; 16(1):116-9. PubMed ID: 18656416 [TBL] [Abstract][Full Text] [Related]
16. An erosion sensor based on a quartz crystal microbalance for quantitative determination of the cleaning efficiency in an ultrasonic vessel. Jüschke M; Koch C; Dreyer T Ultrason Sonochem; 2014 Sep; 21(5):1900-6. PubMed ID: 24838113 [TBL] [Abstract][Full Text] [Related]
17. Dependence of cavitation, chemical effect, and mechanical effect thresholds on ultrasonic frequency. Thanh Nguyen T; Asakura Y; Koda S; Yasuda K Ultrason Sonochem; 2017 Nov; 39():301-306. PubMed ID: 28732949 [TBL] [Abstract][Full Text] [Related]
18. Observations of water cavitation intensity under practical ultrasonic cleaning conditions. Niemczewski B Ultrason Sonochem; 2007 Jan; 14(1):13-8. PubMed ID: 16455284 [TBL] [Abstract][Full Text] [Related]
19. Use of Ultrasonic Cleaning Technology in the Whole Process of Fruit and Vegetable Processing. Zhou W; Sarpong F; Zhou C Foods; 2022 Sep; 11(18):. PubMed ID: 36141006 [TBL] [Abstract][Full Text] [Related]