BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 23168232)

  • 1. Explaining and predicting individually experienced liking of berry fractions by the hTAS2R38 taste receptor genotype.
    Laaksonen O; Ahola J; Sandell M
    Appetite; 2013 Feb; 61(1):85-96. PubMed ID: 23168232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Children's hedonic response to berry products: Effect of chemical composition of berries and hTAS2R38 genotype on liking.
    Suomela JP; Vaarno J; Sandell M; Lehtonen HM; Tahvonen R; Viikari J; Kallio H
    Food Chem; 2012 Dec; 135(3):1210-9. PubMed ID: 22953845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The hTAS2R38 genotype is associated with sugar and candy consumption in preschool boys.
    Hoppu U; Laitinen K; Jaakkola J; Sandell M
    J Hum Nutr Diet; 2015 Jan; 28 Suppl 1():45-51. PubMed ID: 24912558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supertasting and PROP bitterness depends on more than the TAS2R38 gene.
    Hayes JE; Bartoshuk LM; Kidd JR; Duffy VB
    Chem Senses; 2008 Mar; 33(3):255-65. PubMed ID: 18209019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Individual astringency responsiveness affects the acceptance of phenol-rich foods.
    Dinnella C; Recchia A; Tuorila H; Monteleone E
    Appetite; 2011 Jun; 56(3):633-42. PubMed ID: 21354451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human bitter perception correlates with bitter receptor messenger RNA expression in taste cells.
    Lipchock SV; Mennella JA; Spielman AI; Reed DR
    Am J Clin Nutr; 2013 Oct; 98(4):1136-43. PubMed ID: 24025627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TAS2R38 and CA6 genetic polymorphisms, frequency of bitter food intake, and blood biomarkers among elderly woman.
    Mikołajczyk-Stecyna J; Malinowska AM; Chmurzynska A
    Appetite; 2017 Sep; 116():57-64. PubMed ID: 28455260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preference for and sensitivity to flavanol mean degree of polymerization in model wines is correlated with body composition.
    Griffin LE; Diako C; Miller LE; Neilson AP; Ross CF; Stewart AC
    Appetite; 2020 Jan; 144():104442. PubMed ID: 31494153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensory quality of functional beverages: bitterness perception and bitter masking of olive leaf extract fortified fruit smoothies.
    Kranz P; Braun N; Schulze N; Kunz B
    J Food Sci; 2010 Aug; 75(6):S308-11. PubMed ID: 20722953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding the role of personality and alexithymia in food preferences and PROP taste perception.
    Robino A; Mezzavilla M; Pirastu N; La Bianca M; Gasparini P; Carlino D; Tepper BJ
    Physiol Behav; 2016 Apr; 157():72-8. PubMed ID: 26805725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bitter receptor gene (TAS2R38), 6-n-propylthiouracil (PROP) bitterness and alcohol intake.
    Duffy VB; Davidson AC; Kidd JR; Kidd KK; Speed WC; Pakstis AJ; Reed DR; Snyder DJ; Bartoshuk LM
    Alcohol Clin Exp Res; 2004 Nov; 28(11):1629-37. PubMed ID: 15547448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Taste Perception of Antidesma bunius Fruit and Its Relationships to Bitter Taste Receptor Gene Haplotypes.
    Risso D; Sainz E; Morini G; Tofanelli S; Drayna D
    Chem Senses; 2018 Aug; 43(7):463-468. PubMed ID: 29878085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizing and improving the sensory and hedonic responses to polyphenol-rich aronia berry juice.
    Duffy VB; Rawal S; Park J; Brand MH; Sharafi M; Bolling BW
    Appetite; 2016 Dec; 107():116-125. PubMed ID: 27457970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of individual variations in taste sensitivity on coffee perceptions and preferences.
    Masi C; Dinnella C; Monteleone E; Prescott J
    Physiol Behav; 2015 Jan; 138():219-26. PubMed ID: 25446205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influences of Psychological Traits and PROP Taster Status on Familiarity with and Choice of Phenol-Rich Foods and Beverages.
    De Toffoli A; Spinelli S; Monteleone E; Arena E; Di Monaco R; Endrizzi I; Gallina Toschi T; Laureati M; Napolitano F; Torri L; Dinnella C
    Nutrients; 2019 Jun; 11(6):. PubMed ID: 31200523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Food acceptance and genetic variation in taste.
    Duffy VB; Bartoshuk LM
    J Am Diet Assoc; 2000 Jun; 100(6):647-55. PubMed ID: 10863567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Consumer perception of astringency in clear acidic whey protein beverages.
    Childs JL; Drake M
    J Food Sci; 2010; 75(9):S513-21. PubMed ID: 21535625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Does Responsiveness to Basic Tastes Influence Preadolescents' Food Liking? Investigating Taste Responsiveness Segment on Bitter-Sour-Sweet and Salty-Umami Model Food Samples.
    Ervina E; Almli VL; Berget I; Spinelli S; Sick J; Dinnella C
    Nutrients; 2021 Aug; 13(8):. PubMed ID: 34444881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Varying the Color, Aroma, Bitter, and Sweet Levels of a Grapefruit-Like Model Beverage on the Sensory Properties and Liking of the Consumer.
    Gous AGS; Almli VL; Coetzee V; de Kock HL
    Nutrients; 2019 Feb; 11(2):. PubMed ID: 30813331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Salivary protein levels as a predictor of perceived astringency in model systems and solid foods.
    Fleming EE; Ziegler GR; Hayes JE
    Physiol Behav; 2016 Sep; 163():56-63. PubMed ID: 27129672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.