These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 23168271)

  • 1. A technique for measuring velocity and attenuation of ultrasound in liquid foams.
    Pierre J; Elias F; Leroy V
    Ultrasonics; 2013 Feb; 53(2):622-9. PubMed ID: 23168271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sound propagation in liquid foams: Unraveling the balance between physical and chemical parameters.
    Pierre J; Giraudet B; Chasle P; Dollet B; Saint-Jalmes A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042311. PubMed ID: 25974495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustic characterisation of liquid foams with an impedance tube.
    Pierre J; Guillermic RM; Elias F; Drenckhan W; Leroy V
    Eur Phys J E Soft Matter; 2013 Oct; 36(10):113. PubMed ID: 24122276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mass transfer of volatile organic carbons through aqueous foams.
    Gautam PS; Mohanty KK
    J Colloid Interface Sci; 2004 May; 273(2):611-25. PubMed ID: 15082401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Foams and antifoams.
    Karakashev SI; Grozdanova MV
    Adv Colloid Interface Sci; 2012; 176-177():1-17. PubMed ID: 22560722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pneumatic foam generation in the presence of a high-intensity ultrasound field.
    Lim KS; Barigou M
    Ultrason Sonochem; 2005 Apr; 12(5):385-93. PubMed ID: 15590313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-mode dynamics in dispersed systems: the case of particle-stabilized foams studied by diffusing wave spectroscopy.
    Stocco A; Crassous J; Salonen A; Saint-Jalmes A; Langevin D
    Phys Chem Chem Phys; 2011 Feb; 13(8):3064-72. PubMed ID: 21107475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stray-field NMR diffusion q-space diffraction imaging of monodisperse coarsening foams.
    Smith K; Burbidge A; Apperley D; Hodgkinson P; Markwell FA; Topgaard D; Hughes E
    J Colloid Interface Sci; 2016 Aug; 476():20-28. PubMed ID: 27179175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Properties of aqueous foams stabilized by dodecyltrimethylammonium bromide.
    Carey E; Stubenrauch C
    J Colloid Interface Sci; 2009 May; 333(2):619-27. PubMed ID: 19268300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bubble motion measurements during foam drainage and coarsening.
    Maurdev G; Saint-Jalmes A; Langevin D
    J Colloid Interface Sci; 2006 Aug; 300(2):735-43. PubMed ID: 16677666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-frequency tortuosity relaxation in open-cell foams.
    Alvarez-Arenas TE; Gómez IG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):772-8. PubMed ID: 19406705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blast wave attenuation in liquid foams: role of gas and evidence of an optimal bubble size.
    Monloubou M; Bruning MA; Saint-Jalmes A; Dollet B; Cantat I
    Soft Matter; 2016 Sep; 12(38):8015-8024. PubMed ID: 27714324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of tortuosity in aluminum foams using airborne ultrasound.
    Le LH; Zhang C; Ta D; Lou E
    Ultrasonics; 2010 Jan; 50(1):1-5. PubMed ID: 19720388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of surface active substances on bubble motion and collision with various interfaces.
    Malysa K; Krasowska M; Krzan M
    Adv Colloid Interface Sci; 2005 Jun; 114-115():205-25. PubMed ID: 15936293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unusually stable liquid foams.
    Rio E; Drenckhan W; Salonen A; Langevin D
    Adv Colloid Interface Sci; 2014 Mar; 205():74-86. PubMed ID: 24342735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of Ostwald ripening by using surfactants with high surface modulus.
    Tcholakova S; Mitrinova Z; Golemanov K; Denkov ND; Vethamuthu M; Ananthapadmanabhan KP
    Langmuir; 2011 Dec; 27(24):14807-19. PubMed ID: 22059389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sound velocity and absorption in a coarsening foam.
    Mujica N; Fauve S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 1):021404. PubMed ID: 12241175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-path measurements of ultrasonic attenuation and velocity for very dilute slurries and liquids and detection of contaminates.
    Greenwood MS; Adamson JD; Bamberger JA
    Ultrasonics; 2006 Dec; 44 Suppl 1():e461-6. PubMed ID: 16781750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Viscoelasticity of liquid organic foam: relaxations, temporal dependence, and bubble loading effects on flow behavior.
    Kropka JM; Celina M
    J Chem Phys; 2010 Jul; 133(2):024904. PubMed ID: 20632773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surfactant mixtures for control of bubble surface mobility in foam studies.
    Golemanov K; Denkov ND; Tcholakova S; Vethamuthu M; Lips A
    Langmuir; 2008 Sep; 24(18):9956-61. PubMed ID: 18698860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.