These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 23168271)

  • 21. Bubble statistics and coarsening dynamics for quasi-two-dimensional foams with increasing liquid content.
    Roth AE; Jones CD; Durian DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042304. PubMed ID: 23679411
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evolution of liquid holdup profile in a standing protein stabilized foam.
    Wang Z; Narsimhan G
    J Colloid Interface Sci; 2004 Dec; 280(1):224-33. PubMed ID: 15476794
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stabilization of foams with inorganic colloidal particles.
    Gonzenbach UT; Studart AR; Tervoort E; Gauckler LJ
    Langmuir; 2006 Dec; 22(26):10983-8. PubMed ID: 17154574
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rheology of draining steady-state foams.
    Soller R; Koehler SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021504. PubMed ID: 19792130
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Automatic and simultaneous measurements of ultrasonic velocity and attenuation changes.
    Matsuda T; Hatta I
    Rev Sci Instrum; 1979 Oct; 50(10):1239. PubMed ID: 18699367
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ripening of a draining foam bubble.
    Louvet N; Rouyer F; Pitois O
    J Colloid Interface Sci; 2009 Jun; 334(1):82-6. PubMed ID: 19380148
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Measurement of bubble size distribution in a gas-liquid foam using pulsed-field gradient nuclear magnetic resonance.
    Stevenson P; Sederman AJ; Mantle MD; Li X; Gladden LF
    J Colloid Interface Sci; 2010 Dec; 352(1):114-20. PubMed ID: 20832808
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Specific surface area model for foam permeability.
    Pitois O; Lorenceau E; Louvet N; Rouyer F
    Langmuir; 2009 Jan; 25(1):97-100. PubMed ID: 19032030
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Foam Destabilization by Mechanical and Ultrasonic Vibrations.
    Morey MD; Deshpande NS; Barigou M
    J Colloid Interface Sci; 1999 Nov; 219(1):90-98. PubMed ID: 10527575
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Less is more: Unstable foams clean better than stable foams.
    Schad T; Preisig N; Blunk D; Piening H; Drenckhan W; Stubenrauch C
    J Colloid Interface Sci; 2021 May; 590():311-320. PubMed ID: 33548614
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coarsening foams robustly reach a self-similar growth regime.
    Lambert J; Mokso R; Cantat I; Cloetens P; Glazier JA; Graner F; Delannay R
    Phys Rev Lett; 2010 Jun; 104(24):248304. PubMed ID: 20867343
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Measurements of ultrasonic phase velocities and attenuation of slow waves in cellular aluminum foams as cancellous bone-mimicking phantoms.
    Zhang C; Le LH; Zheng R; Ta D; Lou E
    J Acoust Soc Am; 2011 May; 129(5):3317-26. PubMed ID: 21568432
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced drainage and coarsening in aqueous foams.
    Vera MU; Durian DJ
    Phys Rev Lett; 2002 Feb; 88(8):088304. PubMed ID: 11863979
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Experimental verification of models for determining dispersion from attenuation.
    He P
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(3):706-14. PubMed ID: 18238471
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultrasound transmission through monodisperse 2D microfoams.
    Champougny L; Pierre J; Devulder A; Leroy V; Jullien MC
    Eur Phys J E Soft Matter; 2019 Jan; 42(1):6. PubMed ID: 30659393
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Node contribution to the permeability of liquid foams.
    Pitois O; Louvet N; Lorenceau E; Rouyer F
    J Colloid Interface Sci; 2008 Jun; 322(2):675-7. PubMed ID: 18440543
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Estimation of diffraction effect in ultrasonic attenuation by through-transmission substitution technique.
    Xing G; Yang P; He L
    Ultrasonics; 2013 Apr; 53(4):825-30. PubMed ID: 23290825
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigating the origin of acoustic attenuation in liquid foams.
    Pierre J; Gaulon C; Derec C; Elias F; Leroy V
    Eur Phys J E Soft Matter; 2017 Aug; 40(8):73. PubMed ID: 28822121
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rheology of steady-state draining foams.
    Soller R; Koehler SA
    Phys Rev Lett; 2008 May; 100(20):208301. PubMed ID: 18518582
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Diffraction effects on bulk-wave ultrasonic velocity and attenuation measurements.
    Kushibiki J; Arakawa M
    J Acoust Soc Am; 2000 Aug; 108(2):564-73. PubMed ID: 10955621
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.