These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
71 related articles for article (PubMed ID: 23168406)
1. Antifungal activity of the primycin complex and its main components A1, A2 and C1 on a Candida albicans clinical isolate, and their effects on the dynamic plasma membrane changes. Virág E; Belagyi J; Kocsubé S; Vágvölgyi C; Pesti M J Antibiot (Tokyo); 2013 Feb; 66(2):67-72. PubMed ID: 23168406 [TBL] [Abstract][Full Text] [Related]
2. Direct in vivo interaction of the antibiotic primycin with the plasma membrane of Candida albicans: an EPR study. Virág E; Belagyi J; Gazdag Z; Vágvölgyi C; Pesti M Biochim Biophys Acta; 2012 Jan; 1818(1):42-8. PubMed ID: 21978596 [TBL] [Abstract][Full Text] [Related]
3. In vivo direct interaction of the antibiotic primycin on a Candida albicans clinical isolate and its ergosterol-less mutant. Virág E; Juhász A; Kardos R; Gazdag Z; Papp G; Pénzes A; Nyitrai M; Vágvölgyi C; Pesti M Acta Biol Hung; 2012 Mar; 63(1):38-51. PubMed ID: 22453799 [TBL] [Abstract][Full Text] [Related]
4. Effects of azole treatments on the physical properties of Candida albicans plasma membrane: a spin probe EPR study. Sgherri C; Porta A; Castellano S; Pinzino C; Quartacci MF; Calucci L Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):465-73. PubMed ID: 24184423 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of anti-Candida potential of geranium oil constituents against clinical isolates of Candida albicans differentially sensitive to fluconazole: inhibition of growth, dimorphism and sensitization. Zore GB; Thakre AD; Rathod V; Karuppayil SM Mycoses; 2011 Jul; 54(4):e99-109. PubMed ID: 20337938 [TBL] [Abstract][Full Text] [Related]
6. Complex formation between primycin and ergosterol: entropy-driven initiation of modification of the fungal plasma membrane structure. Virág E; Pesti M; Kunsági-Máté S J Antibiot (Tokyo); 2012 Apr; 65(4):193-6. PubMed ID: 22274705 [TBL] [Abstract][Full Text] [Related]
7. Antifungal mechanism of an antimicrobial peptide, HP (2--20), derived from N-terminus of Helicobacter pylori ribosomal protein L1 against Candida albicans. Lee DG; Park Y; Kim HN; Kim HK; Kim PI; Choi BH; Hahm KS Biochem Biophys Res Commun; 2002 Mar; 291(4):1006-13. PubMed ID: 11866466 [TBL] [Abstract][Full Text] [Related]
8. Effects of clary sage oil and its main components, linalool and linalyl acetate, on the plasma membrane of Candida albicans: an in vivo EPR study. Blaskó Á; Gazdag Z; Gróf P; Máté G; Sárosi S; Krisch J; Vágvölgyi C; Makszin L; Pesti M Apoptosis; 2017 Feb; 22(2):175-187. PubMed ID: 27826675 [TBL] [Abstract][Full Text] [Related]
9. Antifungal drug susceptibility of oral Candida albicans isolates may be associated with apoptotic responses to Amphotericin B. Yang C; Gong W; Lu J; Zhu X; Qi Q J Oral Pathol Med; 2010 Feb; 39(2):182-7. PubMed ID: 19656268 [TBL] [Abstract][Full Text] [Related]
10. Structure elucidation of Sch 725674 from Aspergillus sp. Yang SW; Chan TM; Terracciano J; Loebenberg D; Patel M; Chu M J Antibiot (Tokyo); 2005 Aug; 58(8):535-8. PubMed ID: 16266128 [TBL] [Abstract][Full Text] [Related]
11. Bafilomycin C1 exert antifungal effect through disturbing sterol biosynthesis in Candida albicans. Su H; Han L; Ding N; Guan P; Hu C; Huang X J Antibiot (Tokyo); 2018 Mar; 71(4):467-476. PubMed ID: 29391532 [TBL] [Abstract][Full Text] [Related]
12. Fungicidal effect of three new synthetic cationic peptides against Candida albicans. Nikawa H; Fukushima H; Makihira S; Hamada T; Samaranayake LP Oral Dis; 2004 Jul; 10(4):221-8. PubMed ID: 15196144 [TBL] [Abstract][Full Text] [Related]
13. Interaction of azole compounds with DOPC and DOPC/ergosterol bilayers by spin probe EPR spectroscopy: implications for antifungal activity. Cicogna F; Pinzino C; Castellano S; Porta A; Forte C; Calucci L J Phys Chem B; 2013 Oct; 117(40):11978-87. PubMed ID: 24032998 [TBL] [Abstract][Full Text] [Related]
14. Isocryptomerin, a novel membrane-active antifungal compound from Selaginella tamariscina. Lee J; Choi Y; Woo ER; Lee DG Biochem Biophys Res Commun; 2009 Feb; 379(3):676-80. PubMed ID: 19101515 [TBL] [Abstract][Full Text] [Related]
15. Citrinin-induced fluidization of the plasma membrane of the fission yeast Schizosaccharomyces pombe. Blaskó Á; Mike N; Gróf P; Gazdag Z; Czibulya Z; Nagy L; Kunsági-Máté S; Pesti M Food Chem Toxicol; 2013 Sep; 59():636-42. PubMed ID: 23851147 [TBL] [Abstract][Full Text] [Related]
16. Mycological and electron microscopic study of Solanum chrysotrichum saponin SC-2 antifungal activity on Candida species of medical significance. Herrera-Arellano A; Martínez-Rivera Mde L; Hernández-Cruz M; López-Villegas EO; Rodríguez-Tovar AV; Alvarez L; Marquina-Bahena S; Navarro-García VM; Tortoriello J Planta Med; 2007 Dec; 73(15):1568-73. PubMed ID: 18058612 [TBL] [Abstract][Full Text] [Related]
17. Kitamycin C, a new antimycin-type antibiotic from Streptomyces antibioticus strain 200-09. Wang F; Fu SN; Bao YX; Yang Y; Shen HF; Lin BR; Zhou GX Nat Prod Res; 2017 Aug; 31(15):1819-1824. PubMed ID: 28278640 [TBL] [Abstract][Full Text] [Related]
18. Terpenoids inhibit Candida albicans growth by affecting membrane integrity and arrest of cell cycle. Zore GB; Thakre AD; Jadhav S; Karuppayil SM Phytomedicine; 2011 Oct; 18(13):1181-90. PubMed ID: 21596542 [TBL] [Abstract][Full Text] [Related]
19. Antifungal effect of high- and low-molecular-weight chitosan hydrochloride, carboxymethyl chitosan, chitosan oligosaccharide and N-acetyl-D-glucosamine against Candida albicans, Candida krusei and Candida glabrata. Seyfarth F; Schliemann S; Elsner P; Hipler UC Int J Pharm; 2008 Apr; 353(1-2):139-48. PubMed ID: 18164151 [TBL] [Abstract][Full Text] [Related]