BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 23168413)

  • 1. Selective amplification of classical and atypical prions using modified protein misfolding cyclic amplification.
    Makarava N; Savtchenko R; Baskakov IV
    J Biol Chem; 2013 Jan; 288(1):33-41. PubMed ID: 23168413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of genuine prion infectivity by serial PMCA.
    Weber P; Giese A; Piening N; Mitteregger G; Thomzig A; Beekes M; Kretzschmar HA
    Vet Microbiol; 2007 Aug; 123(4):346-57. PubMed ID: 17493773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein Misfolding Cyclic Amplification Cross-Species Products of Mouse-Adapted Scrapie Strain 139A and Hamster-Adapted Scrapie Strain 263K with Brain and Muscle Tissues of Opposite Animals Generate Infectious Prions.
    Gao C; Han J; Zhang J; Wei J; Zhang BY; Tian C; Zhang J; Shi Q; Dong XP
    Mol Neurobiol; 2017 Jul; 54(5):3771-3782. PubMed ID: 27259989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in prion replication environment cause prion strain mutation.
    Gonzalez-Montalban N; Lee YJ; Makarava N; Savtchenko R; Baskakov IV
    FASEB J; 2013 Sep; 27(9):3702-10. PubMed ID: 23729586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new mechanism for transmissible prion diseases.
    Makarava N; Kovacs GG; Savtchenko R; Alexeeva I; Ostapchenko VG; Budka H; Rohwer RG; Baskakov IV
    J Neurosci; 2012 May; 32(21):7345-55. PubMed ID: 22623680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autocatalytic self-propagation of misfolded prion protein.
    Bieschke J; Weber P; Sarafoff N; Beekes M; Giese A; Kretzschmar H
    Proc Natl Acad Sci U S A; 2004 Aug; 101(33):12207-11. PubMed ID: 15297610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Infrared microspectroscopy detects protein misfolding cyclic amplification (PMCA)-induced conformational alterations in hamster scrapie progeny seeds.
    Daus ML; Wagenführ K; Thomzig A; Boerner S; Hermann P; Hermelink A; Beekes M; Lasch P
    J Biol Chem; 2013 Dec; 288(49):35068-80. PubMed ID: 24163371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly efficient protein misfolding cyclic amplification.
    Gonzalez-Montalban N; Makarava N; Ostapchenko VG; Savtchenk R; Alexeeva I; Rohwer RG; Baskakov IV
    PLoS Pathog; 2011 Feb; 7(2):e1001277. PubMed ID: 21347353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of strain-specific PrP(Sc) elongation rates revealed a transformation of PrP(Sc) properties during protein misfolding cyclic amplification.
    Gonzalez-Montalban N; Baskakov IV
    PLoS One; 2012; 7(7):e41210. PubMed ID: 22815972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New Molecular Insight into Mechanism of Evolution of Mammalian Synthetic Prions.
    Makarava N; Savtchenko R; Alexeeva I; Rohwer RG; Baskakov IV
    Am J Pathol; 2016 Apr; 186(4):1006-14. PubMed ID: 26873446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Breakage of PrP aggregates is essential for efficient autocatalytic propagation of misfolded prion protein.
    Piening N; Weber P; Giese A; Kretzschmar H
    Biochem Biophys Res Commun; 2005 Jan; 326(2):339-43. PubMed ID: 15582583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of prion protein glycosylation in replication of human prions by protein misfolding cyclic amplification.
    Camacho MV; Telling G; Kong Q; Gambetti P; Notari S
    Lab Invest; 2019 Nov; 99(11):1741-1748. PubMed ID: 31249376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two alternative pathways for generating transmissible prion disease de novo.
    Makarava N; Savtchenko R; Baskakov IV
    Acta Neuropathol Commun; 2015 Nov; 3():69. PubMed ID: 26556038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atypical and classical forms of the disease-associated state of the prion protein exhibit distinct neuronal tropism, deposition patterns, and lesion profiles.
    Kovacs GG; Makarava N; Savtchenko R; Baskakov IV
    Am J Pathol; 2013 Nov; 183(5):1539-1547. PubMed ID: 24012784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of transition metals (Mn, Cu, Fe) and deoxycholic acid (DA) on the conversion of PrPC to PrPres.
    Kim NH; Choi JK; Jeong BH; Kim JI; Kwon MS; Carp RI; Kim YS
    FASEB J; 2005 May; 19(7):783-5. PubMed ID: 15758042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA molecules stimulate prion protein conversion.
    Deleault NR; Lucassen RW; Supattapone S
    Nature; 2003 Oct; 425(6959):717-20. PubMed ID: 14562104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methods of Protein Misfolding Cyclic Amplification.
    Makarava N; Savtchenko R; Baskakov IV
    Methods Mol Biol; 2017; 1658():169-183. PubMed ID: 28861790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sialylation of prion protein controls the rate of prion amplification, the cross-species barrier, the ratio of PrPSc glycoform and prion infectivity.
    Katorcha E; Makarava N; Savtchenko R; D'Azzo A; Baskakov IV
    PLoS Pathog; 2014 Sep; 10(9):e1004366. PubMed ID: 25211026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sialylation Controls Prion Fate
    Srivastava S; Katorcha E; Daus ML; Lasch P; Beekes M; Baskakov IV
    J Biol Chem; 2017 Feb; 292(6):2359-2368. PubMed ID: 27998976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of prion protein proteolysis and disaggregation on the strain properties of hamster scrapie.
    Deleault AM; Deleault NR; Harris BT; Rees JR; Supattapone S
    J Gen Virol; 2008 Oct; 89(Pt 10):2642-2650. PubMed ID: 18796735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.