These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 23169237)

  • 21. Reimplantable Microdrive for Long-Term Chronic Extracellular Recordings in Freely Moving Rats.
    Polo-Castillo LE; Villavicencio M; Ramírez-Lugo L; Illescas-Huerta E; Moreno MG; Ruiz-Huerta L; Gutierrez R; Sotres-Bayon F; Caballero-Ruiz A
    Front Neurosci; 2019; 13():128. PubMed ID: 30846926
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A screw microdrive for adjustable chronic unit recording in monkeys.
    Nichols AM; Ruffner TW; Sommer MA; Wurtz RH
    J Neurosci Methods; 1998 Jun; 81(1-2):185-8. PubMed ID: 9696324
    [TBL] [Abstract][Full Text] [Related]  

  • 23. TetrODrive: an open-source microdrive for combined electrophysiology and optophysiology.
    Brosch M; Vlasenko A; Ohl FW; Lippert MT
    J Neural Eng; 2021 Apr; 18(4):. PubMed ID: 33908896
    [No Abstract]   [Full Text] [Related]  

  • 24. An inexpensive microdrive for chronic single-unit recording.
    Goldberg E; Minerbo G; Smock T
    Brain Res Bull; 1993; 32(3):321-3. PubMed ID: 8374810
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrode fabrication and implantation in Aplysia californica for multi-channel neural and muscular recordings in intact, freely behaving animals.
    Cullins MJ; Chiel HJ
    J Vis Exp; 2010 Jun; (40):. PubMed ID: 20543773
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A microdrive for use with glass or metal microelectrodes in recording from freely-moving rats.
    Deadwyler SA; Biela J; Rose G; West M; Lynch G
    Electroencephalogr Clin Neurophysiol; 1979 Dec; 47(6):752-4. PubMed ID: 91506
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intracellular neuronal recording in awake nonhuman primates.
    Gao L; Wang X
    Nat Protoc; 2020 Nov; 15(11):3615-3631. PubMed ID: 33046899
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A motorized microdrive for recording of neural ensembles in awake behaving rats.
    Venkateswaran R; Boldt C; Parthasarathy J; Ziaie B; Erdman AG; Redish AD
    J Biomech Eng; 2005 Nov; 127(6):1035-40. PubMed ID: 16438246
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A chronic multi-electrode microdrive for small animals.
    Keating JG; Gerstein GL
    J Neurosci Methods; 2002 Jun; 117(2):201-6. PubMed ID: 12100986
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Piezo motor based microdrive for neural signal recording.
    Yang S; Lee S; Park K; Jeon H; Huh Y; Cho J; Shin HS; Yoon ES
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3364-7. PubMed ID: 19163430
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wireless multi-channel single unit recording in freely moving and vocalizing primates.
    Roy S; Wang X
    J Neurosci Methods; 2012 Jan; 203(1):28-40. PubMed ID: 21933683
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A floating metal microelectrode array for chronic implantation.
    Musallam S; Bak MJ; Troyk PR; Andersen RA
    J Neurosci Methods; 2007 Feb; 160(1):122-7. PubMed ID: 17067683
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Large-Scale Semi-Chronic Microdrive Recording System for Non-Human Primates.
    Dotson NM; Hoffman SJ; Goodell B; Gray CM
    Neuron; 2017 Nov; 96(4):769-782.e2. PubMed ID: 29107523
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neural recording stability of chronic electrode arrays in freely behaving primates.
    Linderman MD; Gilja V; Santhanam G; Afshar A; Ryu S; Meng TH; Shenoy KV
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4387-91. PubMed ID: 17946626
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Compact movable microwire array for long-term chronic unit recording in cerebral cortex of primates.
    Jackson A; Fetz EE
    J Neurophysiol; 2007 Nov; 98(5):3109-18. PubMed ID: 17855584
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A method of extracellular recording of neuronal activity in swimming mice.
    Korshunov VA; Averkin RG
    J Neurosci Methods; 2007 Sep; 165(2):244-50. PubMed ID: 17669505
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Miniature microdrive for extracellular recording of neuronal activity in freely moving animals.
    Korshunov VA
    J Neurosci Methods; 1995 Mar; 57(1):77-80. PubMed ID: 7791367
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Scalable, Lightweight, Integrated and Quick-to-Assemble (SLIQ) Hyperdrives for Functional Circuit Dissection.
    Liang L; Oline SN; Kirk JC; Schmitt LI; Komorowski RW; Remondes M; Halassa MM
    Front Neural Circuits; 2017; 11():8. PubMed ID: 28243194
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multiple single unit recording in the cortex of monkeys using independently moveable microelectrodes.
    Baker SN; Philbin N; Spinks R; Pinches EM; Wolpert DM; MacManus DG; Pauluis Q; Lemon RN
    J Neurosci Methods; 1999 Dec; 94(1):5-17. PubMed ID: 10638811
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Robotic multi-probe single-actuator inchworm neural microdrive.
    Smith RD; Kolb I; Tanaka S; Lee AK; Harris TD; Barbic M
    Elife; 2022 Nov; 11():. PubMed ID: 36355598
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.