These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 23169663)

  • 21. Na+/Ca2+ exchanger modulates the flagellar wave pattern for the regulation of motility activation and chemotaxis in the ascidian spermatozoa.
    Shiba K; Márián T; Krasznai Z; Baba SA; Morisawa M; Yoshida M
    Cell Motil Cytoskeleton; 2006 Oct; 63(10):623-32. PubMed ID: 16869011
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of sperm flagellar motility activation and chemotaxis caused by egg-derived substance(s) in sea cucumber.
    Morita M; Kitamura M; Nakajima A; Sri Susilo E; Takemura A; Okuno M
    Cell Motil Cytoskeleton; 2009 Apr; 66(4):202-14. PubMed ID: 19235200
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ca
    Yoshida K; Shiba K; Sakamoto A; Ikenaga J; Matsunaga S; Inaba K; Yoshida M
    Sci Rep; 2018 Nov; 8(1):16622. PubMed ID: 30413746
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The motor activity of mammalian axonemal dynein studied in situ on doublet microtubules.
    Lorch DP; Lindemann CB; Hunt AJ
    Cell Motil Cytoskeleton; 2008 Jun; 65(6):487-94. PubMed ID: 18421707
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tuning sperm chemotaxis.
    Guerrero A; Wood CD; Nishigaki T; Carneiro J; Darszon A
    Biochem Soc Trans; 2010 Oct; 38(5):1270-4. PubMed ID: 20863297
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of imposed bending on microtubule sliding in sperm flagella.
    Morita Y; Shingyoji C
    Curr Biol; 2004 Dec; 14(23):2113-8. PubMed ID: 15589153
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microtubule sliding in swimming sperm flagella: direct and indirect measurements on sea urchin and tunicate spermatozoa.
    Brokaw CJ
    J Cell Biol; 1991 Sep; 114(6):1201-15. PubMed ID: 1894694
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural-functional relationships of the dynein, spokes, and central-pair projections predicted from an analysis of the forces acting within a flagellum.
    Lindemann CB
    Biophys J; 2003 Jun; 84(6):4115-26. PubMed ID: 12770914
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interdoublet sliding in bovine spermatozoa: its relationship to flagellar motility and the action of inhibitory agents.
    Bird Z; Hard R; Kanous KS; Lindemann CB
    J Struct Biol; 1996; 116(3):418-28. PubMed ID: 8813000
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computer simulation of flagellar movement: VII. Conventional but functionally different cross-bridge models for inner and outer arm dyneins can explain the effects of outer arm dynein removal.
    Brokaw CJ
    Cell Motil Cytoskeleton; 1999; 42(2):134-48. PubMed ID: 10215423
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sperm chemotaxis is driven by the slope of the chemoattractant concentration field.
    Ramírez-Gómez HV; Jimenez Sabinina V; Velázquez Pérez M; Beltran C; Carneiro J; Wood CD; Tuval I; Darszon A; Guerrero A
    Elife; 2020 Mar; 9():. PubMed ID: 32149603
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The flagellar beat of rat sperm is organized by the interaction of two functionally distinct populations of dynein bridges with a stable central axonemal partition.
    Lindemann CB; Orlando A; Kanous KS
    J Cell Sci; 1992 Jun; 102 ( Pt 2)():249-60. PubMed ID: 1400632
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The rate of change in Ca(2+) concentration controls sperm chemotaxis.
    Alvarez L; Dai L; Friedrich BM; Kashikar ND; Gregor I; Pascal R; Kaupp UB
    J Cell Biol; 2012 Mar; 196(5):653-63. PubMed ID: 22371558
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tuning sperm chemotaxis by calcium burst timing.
    Guerrero A; Nishigaki T; Carneiro J; Yoshiro Tatsu ; Wood CD; Darszon A
    Dev Biol; 2010 Aug; 344(1):52-65. PubMed ID: 20435032
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of calcium oscillations in sperm physiology.
    Mata-Martínez E; Sánchez-Cárdenas C; Chávez JC; Guerrero A; Treviño CL; Corkidi G; Montoya F; Hernandez-Herrera P; Buffone MG; Balestrini PA; Darszon A
    Biosystems; 2021 Nov; 209():104524. PubMed ID: 34453988
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The axonemal axis and Ca2+-induced asymmetry of active microtubule sliding in sea urchin sperm tails.
    Sale WS
    J Cell Biol; 1986 Jun; 102(6):2042-52. PubMed ID: 2940250
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct measurements of sliding between outer doublet microtubules in swimming sperm flagella.
    Brokaw CJ
    Science; 1989 Mar; 243(4898):1593-6. PubMed ID: 2928796
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular architecture of the sperm flagella: molecules for motility and signaling.
    Inaba K
    Zoolog Sci; 2003 Sep; 20(9):1043-56. PubMed ID: 14578564
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microtubule sliding in reduced-amplitude bending waves of Ciona sperm flagella: bending waves attenuated by lithium.
    Brokaw CJ
    Cell Motil Cytoskeleton; 1994; 27(2):150-60. PubMed ID: 8162621
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation of microtubule sliding by a 36-kDa phosphoprotein in hamster sperm flagella.
    Si Y; Okuno M
    Mol Reprod Dev; 1999 Mar; 52(3):328-34. PubMed ID: 10206665
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.