These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Tissue distribution, characterization and in vitro inhibition of B-esterases in the earwig Forficula auricularia. Malagnoux L; Capowiez Y; Rault M Chemosphere; 2014 Oct; 112():456-64. PubMed ID: 25048940 [TBL] [Abstract][Full Text] [Related]
4. Role of B-esterases in assessing toxicity of organophosphorus (chlorpyrifos, malathion) and carbamate (carbofuran) pesticides to Daphnia magna. Barata C; Solayan A; Porte C Aquat Toxicol; 2004 Feb; 66(2):125-39. PubMed ID: 15036868 [TBL] [Abstract][Full Text] [Related]
5. Assessing protection against OP pesticides and nerve agents provided by wild-type HuPON1 purified from Trichoplusia ni larvae or induced via adenoviral infection. Hodgins SM; Kasten SA; Harrison J; Otto TC; Oliver ZP; Rezk P; Reeves TE; Chilukuri N; Cerasoli DM Chem Biol Interact; 2013 Mar; 203(1):177-80. PubMed ID: 23123254 [TBL] [Abstract][Full Text] [Related]
6. In vitro kinetic interactions of DEET, pyridostigmine and organophosphorus pesticides with human cholinesterases. Wille T; Thiermann H; Worek F Chem Biol Interact; 2011 Apr; 190(2-3):79-83. PubMed ID: 21354413 [TBL] [Abstract][Full Text] [Related]
7. Characterization of acetylcholinesterase from the brain of the Amazonian tambaqui (Colossoma macropomum) and in vitro effect of organophosphorus and carbamate pesticides. Assis CR; Castro PF; Amaral IP; Carvalho EV; Carvalho LB; Bezerra RS Environ Toxicol Chem; 2010 Oct; 29(10):2243-8. PubMed ID: 20872688 [TBL] [Abstract][Full Text] [Related]
8. Nonenzymatic functions of acetylcholinesterase splice variants in the developmental neurotoxicity of organophosphates: chlorpyrifos, chlorpyrifos oxon, and diazinon. Jameson RR; Seidler FJ; Slotkin TA Environ Health Perspect; 2007 Jan; 115(1):65-70. PubMed ID: 17366821 [TBL] [Abstract][Full Text] [Related]
9. In vitro kinetic interactions of pyridostigmine, physostigmine and soman with erythrocyte and muscle acetylcholinesterase from different species. Herkert NM; Thiermann H; Worek F Toxicol Lett; 2011 Sep; 206(1):41-6. PubMed ID: 21414391 [TBL] [Abstract][Full Text] [Related]
10. Binary combinations of organophosphorus and synthetic pyrethroids are more potent acetylcholinesterase inhibitors than organophosphorus and carbamate mixtures: An in vitro assessment. Arora S; Balotra S; Pandey G; Kumar A Toxicol Lett; 2017 Feb; 268():8-16. PubMed ID: 27988393 [TBL] [Abstract][Full Text] [Related]
11. Comparative effect of pesticides on brain acetylcholinesterase in tropical fish. Assis CR; Linhares AG; Oliveira VM; França RC; Carvalho EV; Bezerra RS; de Carvalho LB Sci Total Environ; 2012 Dec; 441():141-50. PubMed ID: 23137979 [TBL] [Abstract][Full Text] [Related]
12. Planarian cholinesterase: in vitro characterization of an evolutionarily ancient enzyme to study organophosphorus pesticide toxicity and reactivation. Hagstrom D; Hirokawa H; Zhang L; Radic Z; Taylor P; Collins ES Arch Toxicol; 2017 Aug; 91(8):2837-2847. PubMed ID: 27990564 [TBL] [Abstract][Full Text] [Related]
13. Chlorpyrifos, chlorpyrifos-oxon, and diisopropylfluorophosphate inhibit kinesin-dependent microtubule motility. Gearhart DA; Sickles DW; Buccafusco JJ; Prendergast MA; Terry AV Toxicol Appl Pharmacol; 2007 Jan; 218(1):20-9. PubMed ID: 17123561 [TBL] [Abstract][Full Text] [Related]
14. Induction of plasma acetylcholinesterase activity in mice challenged with organophosphorus poisons. Duysen EG; Lockridge O Toxicol Appl Pharmacol; 2011 Sep; 255(2):214-20. PubMed ID: 21767560 [TBL] [Abstract][Full Text] [Related]
15. Identical kinetics of human erythrocyte and muscle acetylcholinesterase with respect to carbamate pre-treatment, residual activity upon soman challenge and spontaneous reactivation after withdrawal of the inhibitors. Herkert NM; Eckert S; Eyer P; Bumm R; Weber G; Thiermann H; Worek F Toxicology; 2008 Apr; 246(2-3):188-92. PubMed ID: 18304715 [TBL] [Abstract][Full Text] [Related]
16. Re: age-related brain cholinesterase inhibition kinetics following in vitro incubation with chlorpyrifos-oxon and diazinon-oxon. Padilla S Toxicol Sci; 2007 Aug; 98(2):604; author reply 605-6. PubMed ID: 17554074 [No Abstract] [Full Text] [Related]
17. Development of a method for extraction and assay of human erythrocyte acetylcholinesterase and pesticide inhibition. Linhares AG; Assis CR; Siqueira MT; Bezerra RS; Carvalho LB Hum Exp Toxicol; 2013 Aug; 32(8):837-45. PubMed ID: 23632007 [TBL] [Abstract][Full Text] [Related]
18. The synergistic toxicity of pesticide mixtures: implications for risk assessment and the conservation of endangered Pacific salmon. Laetz CA; Baldwin DH; Collier TK; Hebert V; Stark JD; Scholz NL Environ Health Perspect; 2009 Mar; 117(3):348-53. PubMed ID: 19337507 [TBL] [Abstract][Full Text] [Related]
19. Age-related brain cholinesterase inhibition kinetics following in vitro incubation with chlorpyrifos-oxon and diazinon-oxon. Kousba AA; Poet TS; Timchalk C Toxicol Sci; 2007 Jan; 95(1):147-55. PubMed ID: 17018647 [TBL] [Abstract][Full Text] [Related]
20. Comparative toxicity of chlorpyrifos, diazinon, malathion and their oxon derivatives to larval Rana boylii. Sparling DW; Fellers G Environ Pollut; 2007 Jun; 147(3):535-9. PubMed ID: 17218044 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]