These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 2317084)

  • 1. Are free radicals and not quinones the haptenic species derived from urushiols and other contact allergenic mono- and dihydric alkylbenzenes? The significance of NADH, glutathione, and redox cycling in the skin.
    Schmidt RJ; Khan L; Chung LY
    Arch Dermatol Res; 1990; 282(1):56-64. PubMed ID: 2317084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of fatty acid oxidation alters contact hypersensitivity to urushiols: role of aliphatic chain beta-oxidation in processing and activation of urushiols.
    Kalergis AM; López CB; Becker MI; Díaz MI; Sein J; Garbarino JA; De Ioannes AE
    J Invest Dermatol; 1997 Jan; 108(1):57-61. PubMed ID: 8980288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genotoxicity of 1,4-benzoquinone and 1,4-naphthoquinone in relation to effects on glutathione and NAD(P)H levels in V79 cells.
    Ludewig G; Dogra S; Glatt H
    Environ Health Perspect; 1989 Jul; 82():223-8. PubMed ID: 2792044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The reactivity of o-quinones which do not isomerize to quinone methides correlates with alkylcatechol-induced toxicity in human melanoma cells.
    Bolton JL; Pisha E; Shen L; Krol ES; Iverson SL; Huang Z; van Breemen RB; Pezzuto JM
    Chem Biol Interact; 1997 Sep; 106(2):133-48. PubMed ID: 9366899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation of catechol by horseradish peroxidase and human leukocyte peroxidase: reactions of o-benzoquinone and o-benzosemiquinone.
    Sadler A; Subrahmanyam VV; Ross D
    Toxicol Appl Pharmacol; 1988 Mar; 93(1):62-71. PubMed ID: 2832975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular characterization of dopamine-derived quinones reactivity toward NADH and glutathione: implications for mitochondrial dysfunction in Parkinson disease.
    Bisaglia M; Soriano ME; Arduini I; Mammi S; Bubacco L
    Biochim Biophys Acta; 2010 Sep; 1802(9):699-706. PubMed ID: 20600874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox cycling of polycyclic aromatic hydrocarbon o-quinones: metal ion-catalyzed oxidation of catechols bypasses inhibition by superoxide dismutase.
    Jarabak R; Harvey RG; Jarabak J
    Chem Biol Interact; 1998 Oct; 115(3):201-13. PubMed ID: 9851290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of free radicals produced during oxidation of etoposide (VP-16) and its catechol and quinone derivatives. An ESR Study.
    Kalyanaraman B; Nemec J; Sinha BK
    Biochemistry; 1989 May; 28(11):4839-46. PubMed ID: 2548593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioreductive activation of catechol estrogen-ortho-quinones: aromatization of the B ring in 4-hydroxyequilenin markedly alters quinoid formation and reactivity.
    Shen L; Pisha E; Huang Z; Pezzuto JM; Krol E; Alam Z; van Breemen RB; Bolton JL
    Carcinogenesis; 1997 May; 18(5):1093-101. PubMed ID: 9163701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of quinone redox cycling by ascorbate induces a caspase-3 independent cell death in human leukaemia cells. An in vitro comparative study.
    Verrax J; Delvaux M; Beghein N; Taper H; Gallez B; Buc Calderon P
    Free Radic Res; 2005 Jun; 39(6):649-57. PubMed ID: 16036343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regiospecific attack of nitrogen and sulfur nucleophiles on quinones derived from poison oak/ivy catechols (urushiols) and analogues as models for urushiol-protein conjugate formation.
    Liberato DJ; Byers VS; Dennick RG; Castagnoli N
    J Med Chem; 1981 Jan; 24(1):28-33. PubMed ID: 7205871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quinone redox cycling in the ligninolytic fungus Pleurotus eryngii leading to extracellular production of superoxide anion radical.
    Guillén F; Martínez MJ; Muñoz C; Martínez AT
    Arch Biochem Biophys; 1997 Mar; 339(1):190-9. PubMed ID: 9056249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of the prohapten concept. Cross reactions between 1,4-substituted benzene derivatives in the guinea pig.
    Basketter DA; Goodwin BF
    Contact Dermatitis; 1988 Oct; 19(4):248-53. PubMed ID: 3219831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential of EPR spin-trapping to investigate in situ free radicals generation from skin allergens in reconstructed human epidermis: cumene hydroperoxide as proof of concept.
    Kuresepi S; Vileno B; Turek P; Lepoittevin JP; Giménez-Arnau E
    Free Radic Res; 2018 Feb; 52(2):171-179. PubMed ID: 29334799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of glutathione S-transferase activity by the quinoid metabolites of equine estrogens.
    Chang M; Zhang F; Shen L; Pauss N; Alam I; van Breemen RB; Blond SY; Bolton JL
    Chem Res Toxicol; 1998 Jul; 11(7):758-65. PubMed ID: 9671538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of glutathione-conjugated semiquinones by the reaction of quinones with glutathione: an ESR study.
    Takahashi N; Schreiber J; Fischer V; Mason RP
    Arch Biochem Biophys; 1987 Jan; 252(1):41-8. PubMed ID: 3028260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the mechanism of the Mn3(+)-induced neurotoxicity of dopamine:prevention of quinone-derived oxygen toxicity by DT diaphorase and superoxide dismutase.
    Segura-Aguilar J; Lind C
    Chem Biol Interact; 1989; 72(3):309-24. PubMed ID: 2557982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In cellulo monitoring of quinone reductase activity and reactive oxygen species production during the redox cycling of 1,2 and 1,4 quinones.
    Cassagnes LE; Perio P; Ferry G; Moulharat N; Antoine M; Gayon R; Boutin JA; Nepveu F; Reybier K
    Free Radic Biol Med; 2015 Dec; 89():126-34. PubMed ID: 26386287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Release of iron from ferritin storage by redox cycling of stilbene and steroid estrogen metabolites: a mechanism of induction of free radical damage by estrogen.
    Wyllie S; Liehr JG
    Arch Biochem Biophys; 1997 Oct; 346(2):180-6. PubMed ID: 9343364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox conversions of methemoglobin during redox cycling of quinones and aromatic nitrocompounds.
    Cénas N; Ollinger K
    Arch Biochem Biophys; 1994 Nov; 315(1):170-6. PubMed ID: 7979395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.