BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 23170880)

  • 1. The role of protonation states in ligand-receptor recognition and binding.
    Petukh M; Stefl S; Alexov E
    Curr Pharm Des; 2013; 19(23):4182-90. PubMed ID: 23170880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protonation and pK changes in protein-ligand binding.
    Onufriev AV; Alexov E
    Q Rev Biophys; 2013 May; 46(2):181-209. PubMed ID: 23889892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simple, intuitive calculations of free energy of binding for protein-ligand complexes. 2. Computational titration and pH effects in molecular models of neuraminidase-inhibitor complexes.
    Fornabaio M; Cozzini P; Mozzarelli A; Abraham DJ; Kellogg GE
    J Med Chem; 2003 Oct; 46(21):4487-500. PubMed ID: 14521411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein-protein binding is often associated with changes in protonation state.
    Mason AC; Jensen JH
    Proteins; 2008 Apr; 71(1):81-91. PubMed ID: 17932920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating binding affinities by docking/scoring methods using variable protonation states.
    Park MS; Gao C; Stern HA
    Proteins; 2011 Jan; 79(1):304-14. PubMed ID: 21058298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Very fast prediction and rationalization of pKa values for protein-ligand complexes.
    Bas DC; Rogers DM; Jensen JH
    Proteins; 2008 Nov; 73(3):765-83. PubMed ID: 18498103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. p
    Aleksandrov A; Roux B; MacKerell AD
    J Chem Theory Comput; 2020 Jul; 16(7):4655-4668. PubMed ID: 32464053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The two pKa's of aspartate-85 and control of thermal isomerization and proton release in the arginine-82 to lysine mutant of bacteriorhodopsin.
    Balashov SP; Govindjee R; Imasheva ES; Misra S; Ebrey TG; Feng Y; Crouch RK; Menick DR
    Biochemistry; 1995 Jul; 34(27):8820-34. PubMed ID: 7612623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling of electron transfer to proton uptake at the Q(B) site of the bacterial reaction center: a perspective from FTIR difference spectroscopy.
    Nabedryk E; Breton J
    Biochim Biophys Acta; 2008 Oct; 1777(10):1229-48. PubMed ID: 18671937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutation of a surface residue, lysine-129, reverses the order of proton release and uptake in bacteriorhodopsin; guanidine hydrochloride restores it.
    Govindjee R; Imasheva ES; Misra S; Balashov SP; Ebrey TG; Chen N; Menick DR; Crouch RK
    Biophys J; 1997 Feb; 72(2 Pt 1):886-98. PubMed ID: 9017214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational Dynamics and Binding Free Energies of Inhibitors of BACE-1: From the Perspective of Protonation Equilibria.
    Kim MO; Blachly PG; McCammon JA
    PLoS Comput Biol; 2015 Oct; 11(10):e1004341. PubMed ID: 26506513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protocols utilizing constant pH molecular dynamics to compute pH-dependent binding free energies.
    Kim MO; Blachly PG; Kaus JW; McCammon JA
    J Phys Chem B; 2015 Jan; 119(3):861-72. PubMed ID: 25134690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the active site protonation state in aspartic proteases: implications for drug design.
    Sussman F; Villaverde MC; Domínguez JL; Danielson UH
    Curr Pharm Des; 2013; 19(23):4257-75. PubMed ID: 23170891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computation of pH-dependent binding free energies.
    Kim MO; McCammon JA
    Biopolymers; 2016 Jan; 105(1):43-9. PubMed ID: 26202905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein-protein docking with dynamic residue protonation states.
    Kilambi KP; Reddy K; Gray JJ
    PLoS Comput Biol; 2014 Dec; 10(12):e1004018. PubMed ID: 25501663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protonation changes upon ligand binding to trypsin and thrombin: structural interpretation based on pK(a) calculations and ITC experiments.
    Czodrowski P; Sotriffer CA; Klebe G
    J Mol Biol; 2007 Apr; 367(5):1347-56. PubMed ID: 17316681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in Protonation States of In-Pathway Residues can Alter Ligand Binding Pathways Obtained From Spontaneous Binding Molecular Dynamics Simulations.
    Girame H; Garcia-Borràs M; Feixas F
    Front Mol Biosci; 2022; 9():922361. PubMed ID: 35860361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energetics of electron-transfer and protonation reactions of the quinones in the photosynthetic reaction center of Rhodopseudomonas viridis.
    Rabenstein B; Ullmann GM; Knapp EW
    Biochemistry; 1998 Feb; 37(8):2488-95. PubMed ID: 9485397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protonation states and pH titration in the photocycle of photoactive yellow protein.
    Demchuk E; Genick UK; Woo TT; Getzoff ED; Bashford D
    Biochemistry; 2000 Feb; 39(5):1100-13. PubMed ID: 10653656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrostatic coupling to pH-titrating sites as a source of cooperativity in protein-ligand binding.
    Spassov V; Bashford D
    Protein Sci; 1998 Sep; 7(9):2012-25. PubMed ID: 9761483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.