These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 23170885)

  • 1. Nucleotide binding affects intrinsic dynamics and structural communication in Ras GTPases.
    Fanelli F; Raimondi F
    Curr Pharm Des; 2013; 19(23):4214-25. PubMed ID: 23170885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleotide binding switches the information flow in ras GTPases.
    Raimondi F; Portella G; Orozco M; Fanelli F
    PLoS Comput Biol; 2011 Mar; 7(3):e1001098. PubMed ID: 21390270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light on the structural communication in Ras GTPases.
    Raimondi F; Felline A; Portella G; Orozco M; Fanelli F
    J Biomol Struct Dyn; 2013; 31(2):142-57. PubMed ID: 22849539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative structural dynamic analysis of GTPases.
    Li H; Yao XQ; Grant BJ
    PLoS Comput Biol; 2018 Nov; 14(11):e1006364. PubMed ID: 30412578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of the guanine nucleotide exchange reaction of Ras GTPase--evidence for a GTP/GDP displacement model.
    Zhang B; Zhang Y; Shacter E; Zheng Y
    Biochemistry; 2005 Feb; 44(7):2566-76. PubMed ID: 15709769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deciphering the deformation modes associated with function retention and specialization in members of the Ras superfamily.
    Raimondi F; Orozco M; Fanelli F
    Structure; 2010 Mar; 18(3):402-14. PubMed ID: 20223222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of human Rad GTPase of the RGK-family.
    Yanuar A; Sakurai S; Kitano K; Hakoshima T
    Genes Cells; 2006 Aug; 11(8):961-8. PubMed ID: 16866878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping the nucleotide and isoform-dependent structural and dynamical features of Ras proteins.
    Gorfe AA; Grant BJ; McCammon JA
    Structure; 2008 Jun; 16(6):885-96. PubMed ID: 18547521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational resolution of nucleotide cycling and effector interactions for multiple small GTPases determined in parallel.
    Killoran RC; Smith MJ
    J Biol Chem; 2019 Jun; 294(25):9937-9948. PubMed ID: 31088913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis for the unique biological function of small GTPase RHEB.
    Yu Y; Li S; Xu X; Li Y; Guan K; Arnold E; Ding J
    J Biol Chem; 2005 Apr; 280(17):17093-100. PubMed ID: 15728574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of human RhoA in a dominantly active form complexed with a GTP analogue.
    Ihara K; Muraguchi S; Kato M; Shimizu T; Shirakawa M; Kuroda S; Kaibuchi K; Hakoshima T
    J Biol Chem; 1998 Apr; 273(16):9656-66. PubMed ID: 9545299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural determinants of RhoA binding and nucleotide exchange in leukemia-associated Rho guanine-nucleotide exchange factor.
    Kristelly R; Gao G; Tesmer JJ
    J Biol Chem; 2004 Nov; 279(45):47352-62. PubMed ID: 15331592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ras conformational switching: simulating nucleotide-dependent conformational transitions with accelerated molecular dynamics.
    Grant BJ; Gorfe AA; McCammon JA
    PLoS Comput Biol; 2009 Mar; 5(3):e1000325. PubMed ID: 19300489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classification and evolution of P-loop GTPases and related ATPases.
    Leipe DD; Wolf YI; Koonin EV; Aravind L
    J Mol Biol; 2002 Mar; 317(1):41-72. PubMed ID: 11916378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superoxide anion radical modulates the activity of Ras and Ras-related GTPases by a radical-based mechanism similar to that of nitric oxide.
    Heo J; Campbell SL
    J Biol Chem; 2005 Apr; 280(13):12438-45. PubMed ID: 15684418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Ras superfamily of small GTPases: the unlocked secrets.
    Goitre L; Trapani E; Trabalzini L; Retta SF
    Methods Mol Biol; 2014; 1120():1-18. PubMed ID: 24470015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical characterization of the Ras-related GTPases Rit and Rin.
    Shao H; Kadono-Okuda K; Finlin BS; Andres DA
    Arch Biochem Biophys; 1999 Nov; 371(2):207-19. PubMed ID: 10545207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual specificity of a prokaryotic GTPase-activating protein (GAP) to two small Ras-like GTPases in Myxococcus xanthus.
    Kanade M; Singh NB; Lagad S; Baranwal J; Gayathri P
    FEBS J; 2021 Mar; 288(5):1565-1585. PubMed ID: 32772462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning and characterization of GEF-H1, a microtubule-associated guanine nucleotide exchange factor for Rac and Rho GTPases.
    Ren Y; Li R; Zheng Y; Busch H
    J Biol Chem; 1998 Dec; 273(52):34954-60. PubMed ID: 9857026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rem2, a new member of the Rem/Rad/Gem/Kir family of Ras-related GTPases.
    Finlin BS; Shao H; Kadono-Okuda K; Guo N; Andres DA
    Biochem J; 2000 Apr; 347 Pt 1(Pt 1):223-31. PubMed ID: 10727423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.