BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 23170891)

  • 1. On the active site protonation state in aspartic proteases: implications for drug design.
    Sussman F; Villaverde MC; Domínguez JL; Danielson UH
    Curr Pharm Des; 2013; 19(23):4257-75. PubMed ID: 23170891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational insights into the protonation states of catalytic dyad in BACE1-acyl guanidine based inhibitor complex.
    Kocak A; Erol I; Yildiz M; Can H
    J Mol Graph Model; 2016 Nov; 70():226-235. PubMed ID: 27770745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ab initio molecular dynamics-based assignment of the protonation state of pepstatin A/HIV-1 protease cleavage site.
    Piana S; Sebastiani D; Carloni P; Parrinello M
    J Am Chem Soc; 2001 Sep; 123(36):8730-7. PubMed ID: 11535077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of the active site protonation state of beta-secretase from molecular dynamics simulation and docking experiment: implications for structure-based inhibitor design.
    Park H; Lee S
    J Am Chem Soc; 2003 Dec; 125(52):16416-22. PubMed ID: 14692784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of pH and ligand charge state on BACE-1 fragment docking performance.
    Domínguez JL; Villaverde MC; Sussman F
    J Comput Aided Mol Des; 2013 May; 27(5):403-17. PubMed ID: 23640428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of the protonation state of the titratable residues on the inhibitor affinity to BACE-1.
    Domínguez JL; Christopeit T; Villaverde MC; Gossas T; Otero JM; Nyström S; Baraznenok V; Lindström E; Danielson UH; Sussman F
    Biochemistry; 2010 Aug; 49(34):7255-63. PubMed ID: 20687525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational Dynamics and Binding Free Energies of Inhibitors of BACE-1: From the Perspective of Protonation Equilibria.
    Kim MO; Blachly PG; McCammon JA
    PLoS Comput Biol; 2015 Oct; 11(10):e1004341. PubMed ID: 26506513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the protonation states of the catalytic aspartates in beta-secretase.
    Rajamani R; Reynolds CH
    J Med Chem; 2004 Oct; 47(21):5159-66. PubMed ID: 15456259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissection of the pH dependence of inhibitor binding energetics for an aspartic protease: direct measurement of the protonation states of the catalytic aspartic acid residues.
    Xie D; Gulnik S; Collins L; Gustchina E; Suvorov L; Erickson JW
    Biochemistry; 1997 Dec; 36(51):16166-72. PubMed ID: 9405050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding of phosphinate and phosphonate inhibitors to aspartic proteases: a first-principles study.
    Vidossich P; Carloni P
    J Phys Chem B; 2006 Jan; 110(3):1437-42. PubMed ID: 16471695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-Range Electrostatics-Induced Two-Proton Transfer Captured by Neutron Crystallography in an Enzyme Catalytic Site.
    Gerlits O; Wymore T; Das A; Shen CH; Parks JM; Smith JC; Weiss KL; Keen DA; Blakeley MP; Louis JM; Langan P; Weber IT; Kovalevsky A
    Angew Chem Int Ed Engl; 2016 Apr; 55(16):4924-7. PubMed ID: 26958828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic resolution crystal structure of Sapp2p, a secreted aspartic protease from Candida parapsilosis.
    Dostál J; Pecina A; Hrušková-Heidingsfeldová O; Marečková L; Pichová I; Řezáčová P; Lepšík M; Brynda J
    Acta Crystallogr D Biol Crystallogr; 2015 Dec; 71(Pt 12):2494-504. PubMed ID: 26627656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of the putative catalytic base in the phosphoryl transfer reaction in a protein kinase: first-principles calculations.
    Valiev M; Kawai R; Adams JA; Weare JH
    J Am Chem Soc; 2003 Aug; 125(33):9926-7. PubMed ID: 12914447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling of electron transfer to proton uptake at the Q(B) site of the bacterial reaction center: a perspective from FTIR difference spectroscopy.
    Nabedryk E; Breton J
    Biochim Biophys Acta; 2008 Oct; 1777(10):1229-48. PubMed ID: 18671937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Population density analysis for determining the protonation state of the catalytic dyad in BACE1-tertiary carbinamine-based inhibitor complex.
    Gueto-Tettay C; Pelaez-Bedoya L; Drosos-Ramirez JC
    J Biomol Struct Dyn; 2018 Oct; 36(13):3557-3574. PubMed ID: 29052456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining dyad protonation and active site plasticity in BACE-1 structure-based drug design.
    Kacker P; Masetti M; Mangold M; Bottegoni G; Cavalli A
    J Chem Inf Model; 2012 May; 52(5):1079-85. PubMed ID: 22313091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the protonation states of β-secretase binding pocket by molecular dynamics simulations and docking studies.
    Sabbah DA; Zhong HA
    J Mol Graph Model; 2016 Jul; 68():206-215. PubMed ID: 27474865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protonation states of the catalytic dyad of β-secretase (BACE1) in the presence of chemically diverse inhibitors: a molecular docking study.
    Barman A; Prabhakar R
    J Chem Inf Model; 2012 May; 52(5):1275-87. PubMed ID: 22545704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of the protonation state of the Asp dyad: conventional molecular dynamics versus thermodynamic integration.
    Huang J; Zhu Y; Sun B; Yao Y; Liu J
    J Mol Model; 2016 Mar; 22(3):58. PubMed ID: 26885844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamic mapping of the inhibitor site of the aspartic protease endothiapepsin.
    Gómez J; Freire E
    J Mol Biol; 1995 Sep; 252(3):337-50. PubMed ID: 7563055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.