These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 23170978)

  • 1. Transcriptional response of lignin-degrading enzymes to 17α-ethinyloestradiol in two white rots.
    Přenosilová L; Křesinová Z; Amemori AS; Cajthaml T; Svobodová K
    Microb Biotechnol; 2013 May; 6(3):300-6. PubMed ID: 23170978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature affects the production, activity and stability of ligninolytic enzymes in Pleurotus ostreatus and Trametes versicolor.
    Snajdr J; Baldrian P
    Folia Microbiol (Praha); 2007; 52(5):498-502. PubMed ID: 18298047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact assessment of bisphenol A on lignin-modifying enzymes by basidiomycete Trametes versicolor.
    Takamiya M; Magan N; Warner PJ
    J Hazard Mater; 2008 Jun; 154(1-3):33-7. PubMed ID: 17996365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in oxidative enzyme activity during interspecific mycelial interactions involving the white-rot fungus Trametes versicolor.
    Hiscox J; Baldrian P; Rogers HJ; Boddy L
    Fungal Genet Biol; 2010 Jun; 47(6):562-71. PubMed ID: 20371297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced expression of laccase during the degradation of endocrine disrupting chemicals in Trametes versicolor.
    Kim Y; Yeo S; Song HG; Choi HT
    J Microbiol; 2008 Aug; 46(4):402-7. PubMed ID: 18758730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lignin-degrading peroxidases in Polyporales: an evolutionary survey based on 10 sequenced genomes.
    Ruiz-Dueñas FJ; Lundell T; Floudas D; Nagy LG; Barrasa JM; Hibbett DS; Martínez AT
    Mycologia; 2013; 105(6):1428-44. PubMed ID: 23921235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of a transformant showing higher manganese peroxidase (Mnp) activity by overexpression of Mnp gene in Trametes versicolor.
    Yeo S; Park N; Song HG; Choi HT
    J Microbiol; 2007 Jun; 45(3):213-8. PubMed ID: 17618226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of Laccase, Lignin Peroxidase and Manganese Peroxidase Activities in White-Rot Fungi Using Copper Complexes.
    Vrsanska M; Voberkova S; Langer V; Palovcikova D; Moulick A; Adam V; Kopel P
    Molecules; 2016 Nov; 21(11):. PubMed ID: 27869681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A proposed stepwise screening framework for the selection of polycyclic aromatic hydrocarbon (PAH)-degrading white rot fungi.
    Lee AH; Lee H; Heo YM; Lim YW; Kim CM; Kim GH; Chang W; Kim JJ
    Bioprocess Biosyst Eng; 2020 May; 43(5):767-783. PubMed ID: 31938872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning of a manganese peroxidase cDNA gene repressed by manganese in Trametes versicolor.
    Kim Y; Yeo S; Kum J; Song HG; Choi HT
    J Microbiol; 2005 Dec; 43(6):569-71. PubMed ID: 16410775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of laccase production by Trametes versicolor cultivated on industrial waste.
    Tišma M; Znidaršič-Plazl P; Vasić-Rački D; Zelić B
    Appl Biochem Biotechnol; 2012 Jan; 166(1):36-46. PubMed ID: 21989801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into lignin degradation and its potential industrial applications.
    Abdel-Hamid AM; Solbiati JO; Cann IK
    Adv Appl Microbiol; 2013; 82():1-28. PubMed ID: 23415151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of growth substrate, method of fermentation, and nitrogen source on lignocellulose-degrading enzymes production by white-rot basidiomycetes.
    Elisashvili V; Kachlishvili E; Penninckx M
    J Ind Microbiol Biotechnol; 2008 Nov; 35(11):1531-8. PubMed ID: 18716810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of the expression of a laccase gene from Trametes versicolor in Pichia methanolica.
    Guo M; Lu F; Du L; Pu J; Bai D
    Appl Microbiol Biotechnol; 2006 Aug; 71(6):848-52. PubMed ID: 16292528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Lignin-Modifying Enzyme Activity of Trametes spp. (Agaricomycetes) Isolated from Georgian Forests with an Emphasis on T. multicolor Biosynthetic Potential.
    Kachlishvili E; Asatiani MD; Kobakhidze A; Elisashvili V
    Int J Med Mushrooms; 2018; 20(10):971-987. PubMed ID: 30806269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of bound and free fractions of lignocellulose-degrading enzymes of wood-rotting fungi Pleurotus ostreatus, Trametes versicolor and Piptoporus betulinus.
    Valásková V; Baldrian P
    Res Microbiol; 2006 Mar; 157(2):119-24. PubMed ID: 16125911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two Zn
    Wang C; Zhang X; Wu K; Liu S; Li X; Zhu C; Xiao Y; Fang Z; Liu J
    Appl Environ Microbiol; 2024 Jul; 90(7):e0054524. PubMed ID: 38899887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Grape stalks as substrate for white rot fungi, lignocellulolytic enzyme production and dye decolorization.
    Levin L; Diorio L; Grassi E; Forchiassin F
    Rev Argent Microbiol; 2012; 44(2):105-12. PubMed ID: 22997770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential of Lignocellulosic Waste for Laccase Production by
    Yuliana T; Komara DZ; Saripudin GLU; Subroto E; Safitri R
    Pak J Biol Sci; 2021 Jan; 24(6):699-705. PubMed ID: 34486346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of laccase production by Cerrena unicolor through fungal interspecies interaction and optimum conditions determination.
    Kachlishvili E; Jokharidze T; Kobakhidze A; Elisashvili V
    Arch Microbiol; 2021 Sep; 203(7):3905-3917. PubMed ID: 34014357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.