These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 23170996)
21. AtHMA1 contributes to the detoxification of excess Zn(II) in Arabidopsis. Kim YY; Choi H; Segami S; Cho HT; Martinoia E; Maeshima M; Lee Y Plant J; 2009 Jun; 58(5):737-53. PubMed ID: 19207208 [TBL] [Abstract][Full Text] [Related]
22. Heterologous expression of the BABY BOOM AP2/ERF transcription factor enhances the regeneration capacity of tobacco (Nicotiana tabacum L.). Srinivasan C; Liu Z; Heidmann I; Supena ED; Fukuoka H; Joosen R; Lambalk J; Angenent G; Scorza R; Custers JB; Boutilier K Planta; 2007 Jan; 225(2):341-51. PubMed ID: 16924539 [TBL] [Abstract][Full Text] [Related]
23. Regulation of arbuscular mycorrhization by apoplastic invertases: enhanced invertase activity in the leaf apoplast affects the symbiotic interaction. Schaarschmidt S; Kopka J; Ludwig-Müller J; Hause B Plant J; 2007 Aug; 51(3):390-405. PubMed ID: 17521407 [TBL] [Abstract][Full Text] [Related]
24. Functional analyses of TaHMA2, a P(1B)-type ATPase in wheat. Tan J; Wang J; Chai T; Zhang Y; Feng S; Li Y; Zhao H; Liu H; Chai X Plant Biotechnol J; 2013 May; 11(4):420-31. PubMed ID: 23294838 [TBL] [Abstract][Full Text] [Related]
25. Zinc uptake and HMA4 activity are required for micro- and macroelement balance in tobacco (Nicotiana tabacum). Liedschulte V; Duncan Battey JN; Laparra H; Kleinhans S; Bovet L; Goepfert S Phytochemistry; 2021 Nov; 191():112911. PubMed ID: 34418773 [TBL] [Abstract][Full Text] [Related]
26. Over-expression of ascorbate oxidase in the apoplast of transgenic tobacco results in altered ascorbate and glutathione redox states and increased sensitivity to ozone. Sanmartin M; Drogoudi PA; Lyons T; Pateraki I; Barnes J; Kanellis AK Planta; 2003 Apr; 216(6):918-28. PubMed ID: 12687359 [TBL] [Abstract][Full Text] [Related]
27. Suppressed expression of the apoplastic ascorbate oxidase gene increases salt tolerance in tobacco and Arabidopsis plants. Yamamoto A; Bhuiyan MN; Waditee R; Tanaka Y; Esaka M; Oba K; Jagendorf AT; Takabe T J Exp Bot; 2005 Jul; 56(417):1785-96. PubMed ID: 15883131 [TBL] [Abstract][Full Text] [Related]
28. Root-to-shoot translocation of alkaloids is dominantly suppressed in Nicotiana alata. Pakdeechanuan P; Shoji T; Hashimoto T Plant Cell Physiol; 2012 Jul; 53(7):1247-54. PubMed ID: 22555816 [TBL] [Abstract][Full Text] [Related]
29. Zinc transporter of Arabidopsis thaliana AtMTP1 is localized to vacuolar membranes and implicated in zinc homeostasis. Kobae Y; Uemura T; Sato MH; Ohnishi M; Mimura T; Nakagawa T; Maeshima M Plant Cell Physiol; 2004 Dec; 45(12):1749-58. PubMed ID: 15653794 [TBL] [Abstract][Full Text] [Related]
30. The transgene pyramiding tobacco with betaine synthesis and heterologous expression of AtNHX1 is more tolerant to salt stress than either of the tobacco lines with betaine synthesis or AtNHX1. Duan X; Song Y; Yang A; Zhang J Physiol Plant; 2009 Mar; 135(3):281-95. PubMed ID: 19236662 [TBL] [Abstract][Full Text] [Related]
31. Functional expression of PHO1 to the Golgi and trans-Golgi network and its role in export of inorganic phosphate. Arpat AB; Magliano P; Wege S; Rouached H; Stefanovic A; Poirier Y Plant J; 2012 Aug; 71(3):479-91. PubMed ID: 22449068 [TBL] [Abstract][Full Text] [Related]
32. Overexpression of the OsZIP4 zinc transporter confers disarrangement of zinc distribution in rice plants. Ishimaru Y; Masuda H; Suzuki M; Bashir K; Takahashi M; Nakanishi H; Mori S; Nishizawa NK J Exp Bot; 2007; 58(11):2909-15. PubMed ID: 17630290 [TBL] [Abstract][Full Text] [Related]
33. Functional significance of AtHMA4 C-terminal domain in planta. Mills RF; Valdes B; Duke M; Peaston KA; Lahner B; Salt DE; Williams LE PLoS One; 2010 Oct; 5(10):e13388. PubMed ID: 20975991 [TBL] [Abstract][Full Text] [Related]
34. A mutant strain Arabidopsis thaliana that lacks vacuolar membrane zinc transporter MTP1 revealed the latent tolerance to excessive zinc. Kawachi M; Kobae Y; Mori H; Tomioka R; Lee Y; Maeshima M Plant Cell Physiol; 2009 Jun; 50(6):1156-70. PubMed ID: 19433490 [TBL] [Abstract][Full Text] [Related]
35. A combined zinc/cadmium sensor and zinc/cadmium export regulator in a heavy metal pump. Baekgaard L; Mikkelsen MD; Sørensen DM; Hegelund JN; Persson DP; Mills RF; Yang Z; Husted S; Andersen JP; Buch-Pedersen MJ; Schjoerring JK; Williams LE; Palmgren MG J Biol Chem; 2010 Oct; 285(41):31243-52. PubMed ID: 20650903 [TBL] [Abstract][Full Text] [Related]
36. Diversity analysis of the response to Zn within the Arabidopsis thaliana species revealed a low contribution of Zn translocation to Zn tolerance and a new role for Zn in lateral root development. Richard O; Pineau C; Loubet S; Chalies C; Vile D; Marquès L; Berthomieu P Plant Cell Environ; 2011 Jul; 34(7):1065-78. PubMed ID: 21410476 [TBL] [Abstract][Full Text] [Related]
37. Improved phytoaccumulation of cadmium by genetically modified tobacco plants (Nicotiana tabacum L.). Physiological and biochemical response of the transformants to cadmium toxicity. Gorinova N; Nedkovska M; Todorovska E; Simova-Stoilova L; Stoyanova Z; Georgieva K; Demirevska-Kepova K; Atanassov A; Herzig R Environ Pollut; 2007 Jan; 145(1):161-70. PubMed ID: 16762468 [TBL] [Abstract][Full Text] [Related]
38. The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. Takahashi R; Ishimaru Y; Shimo H; Ogo Y; Senoura T; Nishizawa NK; Nakanishi H Plant Cell Environ; 2012 Nov; 35(11):1948-57. PubMed ID: 22548273 [TBL] [Abstract][Full Text] [Related]
39. A putative novel role for plant defensins: a defensin from the zinc hyper-accumulating plant, Arabidopsis halleri, confers zinc tolerance. Mirouze M; Sels J; Richard O; Czernic P; Loubet S; Jacquier A; François IE; Cammue BP; Lebrun M; Berthomieu P; Marquès L Plant J; 2006 Aug; 47(3):329-42. PubMed ID: 16792695 [TBL] [Abstract][Full Text] [Related]
40. Arabidopsis thaliana MTP1 is a Zn transporter in the vacuolar membrane which mediates Zn detoxification and drives leaf Zn accumulation. Desbrosses-Fonrouge AG; Voigt K; Schröder A; Arrivault S; Thomine S; Krämer U FEBS Lett; 2005 Aug; 579(19):4165-74. PubMed ID: 16038907 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]