BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 23171060)

  • 1. Finite element modelling of human auditory periphery including a feed-forward amplification of the cochlea.
    Wang X; Wang L; Zhou J; Hu Y
    Comput Methods Biomech Biomed Engin; 2014 Aug; 17(10):1096-107. PubMed ID: 23171060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of sound transmission from ear canal to cochlea.
    Gan RZ; Reeves BP; Wang X
    Ann Biomed Eng; 2007 Dec; 35(12):2180-95. PubMed ID: 17882549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transient response of the human ear to impulsive stimuli: A finite element analysis.
    Zhang J; Tian J; Ta N; Rao Z
    J Acoust Soc Am; 2018 May; 143(5):2768. PubMed ID: 29857768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-Dimensional Finite Element Modeling of Blast Wave Transmission From the External Ear to a Spiral Cochlea.
    Brown MA; Bradshaw JJ; Gan RZ
    J Biomech Eng; 2022 Jan; 144(1):. PubMed ID: 34318317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predictions of middle-ear and passive cochlear mechanics using a finite element model of the pediatric ear.
    Wang X; Keefe DH; Gan RZ
    J Acoust Soc Am; 2016 Apr; 139(4):1735. PubMed ID: 27106321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D Finite Element Model of Human Ear with 3-Chamber Spiral Cochlea for Blast Wave Transmission from the Ear Canal to Cochlea.
    Bradshaw JJ; Brown MA; Jiang S; Gan RZ
    Ann Biomed Eng; 2023 May; 51(5):1106-1118. PubMed ID: 37036617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Comparison of differental intracochlear pressures between round window stimulation and ear canal stimulation].
    Wang X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Dec; 29(6):1109-13. PubMed ID: 23469540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-compartment passive frequency domain cochlea model allowing independent fluid coupling to the tectorial and basilar membranes.
    Cormack J; Liu Y; Nam JH; Gracewski SM
    J Acoust Soc Am; 2015 Mar; 137(3):1117-25. PubMed ID: 25786927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A computational model of the auditory periphery for speech and hearing research. I. Ascending path.
    Giguère C; Woodland PC
    J Acoust Soc Am; 1994 Jan; 95(1):331-42. PubMed ID: 8120244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Finite Element Modeling of Blast Wave Transmission from the External Ear to Cochlea.
    Brown MA; Ji XD; Gan RZ
    Ann Biomed Eng; 2021 Feb; 49(2):757-768. PubMed ID: 32926269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracochlear pressure and organ of corti impedance from a linear active three-dimensional model.
    Yoon YJ; Puria S; Steele CR
    ORL J Otorhinolaryngol Relat Spec; 2006; 68(6):365-72. PubMed ID: 17065831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite element modelling of sound transmission from outer to inner ear.
    Areias B; Santos C; Natal Jorge RM; Gentil F; Parente MP
    Proc Inst Mech Eng H; 2016 Nov; 230(11):999-1007. PubMed ID: 27591576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Outer ear canal sound pressure and bone vibration measurement in SSD and CHL patients using a transcutaneous bone conduction instrument.
    Ghoncheh M; Lilli G; Lenarz T; Maier H
    Hear Res; 2016 Oct; 340():161-168. PubMed ID: 26723102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cochlear model with three-dimensional fluid, inner sulcus and feed-forward mechanism.
    Steele CR; Lim KM
    Audiol Neurootol; 1999; 4(3-4):197-203. PubMed ID: 10187930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracochlear pressure and derived quantities from a three-dimensional model.
    Yoon YJ; Puria S; Steele CR
    J Acoust Soc Am; 2007 Aug; 122(2):952-66. PubMed ID: 17672644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite element simulation of cochlear traveling wave under air and bone conduction hearing.
    Ren LJ; Yu Y; Fang YQ; Hua C; Dai PD; Zhang TY
    Biomech Model Mechanobiol; 2021 Aug; 20(4):1251-1265. PubMed ID: 33786715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chinchilla middle ear transmission matrix model and middle-ear flexibility.
    Ravicz ME; Rosowski JJ
    J Acoust Soc Am; 2017 May; 141(5):3274. PubMed ID: 28599566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model predictions for bone conduction perception in the human.
    Stenfelt S
    Hear Res; 2016 Oct; 340():135-143. PubMed ID: 26657096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency tuning of mechanical responses in the mammalian cochlea.
    Robles L; Alcayaga C
    Biol Res; 1996; 29(3):325-31. PubMed ID: 9278704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mechano-electro-acoustical model for the cochlea: response to acoustic stimuli.
    Ramamoorthy S; Deo NV; Grosh K
    J Acoust Soc Am; 2007 May; 121(5 Pt1):2758-73. PubMed ID: 17550176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.