BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 23171082)

  • 1. Single-walled carbon nanotubes alter cytochrome c electron transfer and modulate mitochondrial function.
    Ma X; Zhang LH; Wang LR; Xue X; Sun JH; Wu Y; Zou G; Wu X; Wang PC; Wamer WG; Yin JJ; Zheng K; Liang XJ
    ACS Nano; 2012 Dec; 6(12):10486-96. PubMed ID: 23171082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms for the direct electron transfer of cytochrome c induced by multi-walled carbon nanotubes.
    Zhao HZ; Du Q; Li ZS; Yang QZ
    Sensors (Basel); 2012; 12(8):10450-62. PubMed ID: 23112609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectroscopic approach for the interaction of carbon nanoparticles with cytochrome c and BY-2 cells: Protein structure and mitochondrial function.
    Chen L; Hao J; Xu L; Meng X; Li X; Nie C; Xie F; Liu K; Peng X; Xie J; Liang T; Guo Z
    Int J Biol Macromol; 2019 Oct; 138():29-36. PubMed ID: 31302123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-walled and multiwalled carbon nanotubes induce oxidative stress in isolated rat brain mitochondria.
    Rasras S; Kalantari H; Rezaei M; Dehghani MA; Zeidooni L; Alikarami K; Dehghani F; Alboghobeish S
    Toxicol Ind Health; 2019 Jul; 35(7):497-506. PubMed ID: 31272286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions of the major metabolite of the cancer chemopreventive drug oltipraz with cytochrome c: a novel pathway for cancer chemoprevention.
    Velayutham M; Muthukumaran RB; Sostaric JZ; McCraken J; Fishbein JC; Zweier JL
    Free Radic Biol Med; 2007 Oct; 43(7):1076-85. PubMed ID: 17761303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic oxidation and reduction reactions of hydrophilic carbon clusters with NADH and cytochrome C: features of an electron transport nanozyme.
    Derry PJ; Nilewski LG; Sikkema WKA; Mendoza K; Jalilov A; Berka V; McHugh EA; Tsai AL; Tour JM; Kent TA
    Nanoscale; 2019 Jun; 11(22):10791-10807. PubMed ID: 31134256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Apoptotic interactions of cytochrome c: redox flirting with anionic phospholipids within and outside of mitochondria.
    Bayir H; Fadeel B; Palladino MJ; Witasp E; Kurnikov IV; Tyurina YY; Tyurin VA; Amoscato AA; Jiang J; Kochanek PM; DeKosky ST; Greenberger JS; Shvedova AA; Kagan VE
    Biochim Biophys Acta; 2006; 1757(5-6):648-59. PubMed ID: 16740248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of H₂O₂ and generation of superoxide radical: role of cytochrome c and NADH.
    Velayutham M; Hemann C; Zweier JL
    Free Radic Biol Med; 2011 Jul; 51(1):160-70. PubMed ID: 21545835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of cytotoxic effects of single-walled carbon nanotubes functionalized with different chemical groups on human MCF7 cells.
    Song M; Zeng L; Yuan S; Yin J; Wang H; Jiang G
    Chemosphere; 2013 Jul; 92(5):576-82. PubMed ID: 23648328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue-specific regulation of cytochrome c by post-translational modifications: respiration, the mitochondrial membrane potential, ROS, and apoptosis.
    Kalpage HA; Bazylianska V; Recanati MA; Fite A; Liu J; Wan J; Mantena N; Malek MH; Podgorski I; Heath EI; Vaishnav A; Edwards BF; Grossman LI; Sanderson TH; Lee I; Hüttemann M
    FASEB J; 2019 Feb; 33(2):1540-1553. PubMed ID: 30222078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A reagentless biosensor of nitric oxide based on direct electron transfer process of cytochrome c on multi-walled carbon nanotube.
    Zhao GC; Yin ZZ; Wei XW
    Front Biosci; 2005 Sep; 10():2005-10. PubMed ID: 15970472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacological and toxicological target organelles and safe use of single-walled carbon nanotubes as drug carriers in treating Alzheimer disease.
    Yang Z; Zhang Y; Yang Y; Sun L; Han D; Li H; Wang C
    Nanomedicine; 2010 Jun; 6(3):427-41. PubMed ID: 20056170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-walled carbon nanotube conjugated cytochrome c as exogenous nano catalytic medicine to combat intracellular oxidative stress.
    Shukla AK; Abidi SMS; Sharma C; Chand Saini T; Acharya A
    Free Radic Biol Med; 2022 Nov; 193(Pt 1):238-252. PubMed ID: 36257485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid and delayed effects of single-walled carbon nanotubes in glioma cells.
    Golubewa L; Kulahava T; Timoshchenko I; Shuba M; Svirko Y; Kuzhir P
    Nanotechnology; 2021 Oct; 32(50):. PubMed ID: 34547739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Double face of cytochrome c in cancers by Raman imaging.
    Abramczyk H; Brozek-Pluska B; Kopeć M
    Sci Rep; 2022 Feb; 12(1):2120. PubMed ID: 35136078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel redox-sensitive system based on single-walled carbon nanotubes for chemo-photothermal therapy and magnetic resonance imaging.
    Hou L; Yang X; Ren J; Wang Y; Zhang H; Feng Q; Shi Y; Shan X; Yuan Y; Zhang Z
    Int J Nanomedicine; 2016; 11():607-24. PubMed ID: 26917960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High resolution respirometry analysis of polyethylenimine-mediated mitochondrial energy crisis and cellular stress: Mitochondrial proton leak and inhibition of the electron transport system.
    Hall A; Larsen AK; Parhamifar L; Meyle KD; Wu LP; Moghimi SM
    Biochim Biophys Acta; 2013 Oct; 1827(10):1213-25. PubMed ID: 23850549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorylation of Cytochrome c Threonine 28 Regulates Electron Transport Chain Activity in Kidney: IMPLICATIONS FOR AMP KINASE.
    Mahapatra G; Varughese A; Ji Q; Lee I; Liu J; Vaishnav A; Sinkler C; Kapralov AA; Moraes CT; Sanderson TH; Stemmler TL; Grossman LI; Kagan VE; Brunzelle JS; Salomon AR; Edwards BF; Hüttemann M
    J Biol Chem; 2017 Jan; 292(1):64-79. PubMed ID: 27758862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of polyethylene glycol surface charge functionalization of SWCNT on the in vitro and in vivo nanotoxicity and biodistribution monitored noninvasively using MRI.
    Shaik AS; Shaik AP; Bammidi VK; Al Faraj A
    Toxicol Mech Methods; 2019 May; 29(4):233-243. PubMed ID: 30480460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peroxidation and externalization of phosphatidylserine associated with release of cytochrome c from mitochondria.
    Jiang J; Serinkan BF; Tyurina YY; Borisenko GG; Mi Z; Robbins PD; Schroit AJ; Kagan VE
    Free Radic Biol Med; 2003 Oct; 35(7):814-25. PubMed ID: 14583346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.