BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 23171302)

  • 21. Optically induced crossover from weak to strong coupling regime between surface plasmon polaritons and photochromic molecules.
    Asamoah BO; Mohamed S; Datta S; Karvinen P; Rekola H; Priimagi A; Hakala TK
    Opt Express; 2020 Aug; 28(18):26509-26518. PubMed ID: 32906923
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Observation of Mode Splitting in Photoluminescence of Individual Plasmonic Nanoparticles Strongly Coupled to Molecular Excitons.
    Wersäll M; Cuadra J; Antosiewicz TJ; Balci S; Shegai T
    Nano Lett; 2017 Jan; 17(1):551-558. PubMed ID: 28005384
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vacuum Rabi splitting of a dark plasmonic cavity mode revealed by fast electrons.
    Bitton O; Gupta SN; Houben L; Kvapil M; Křápek V; Šikola T; Haran G
    Nat Commun; 2020 Jan; 11(1):487. PubMed ID: 31980624
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers.
    Schlather AE; Large N; Urban AS; Nordlander P; Halas NJ
    Nano Lett; 2013 Jul; 13(7):3281-6. PubMed ID: 23746061
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tuning Hybrid exciton-Photon Fano Resonances in Two-Dimensional Organic-Inorganic Perovskite Thin Films.
    Muckel F; Guye KN; Gallagher SM; Liu Y; Ginger DS
    Nano Lett; 2021 Jul; 21(14):6124-6131. PubMed ID: 34269589
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Orientation-Dependent Exciton-Plasmon Coupling in Embedded Organic/Metal Nanowire Heterostructures.
    Li YJ; Hong Y; Peng Q; Yao J; Zhao YS
    ACS Nano; 2017 Oct; 11(10):10106-10112. PubMed ID: 28930431
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Strong Dipole-Quadrupole-Exciton Coupling Realized in a Gold Nanorod Dimer Placed on a Two-Dimensional Material.
    Pang H; Huang H; Zhou L; Mao Y; Deng F; Lan S
    Nanomaterials (Basel); 2021 Jun; 11(6):. PubMed ID: 34203113
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanoscale quantum plasmon sensing based on strong photon-exciton coupling.
    Qian Z; Ren J; Zhang F; Duan X; Gong Q; Gu Y
    Nanotechnology; 2020 Mar; 31(12):125001. PubMed ID: 31791020
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electroluminescence as a Probe of Strong Exciton-Plasmon Coupling in Few-Layer WSe
    Zhu Y; Yang J; Abad-Arredondo J; Fernández-Domínguez AI; Garcia-Vidal FJ; Natelson D
    Nano Lett; 2024 Jan; 24(1):525-532. PubMed ID: 38109687
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Colloidal Assembly of Au-Quantum Dot-Au Sandwiched Nanostructures with Strong Plasmon-Exciton Coupling.
    Luo Y; Wang Y; Liu M; Zhu H; Chen O; Zou S; Zhao J
    J Phys Chem Lett; 2020 Apr; 11(7):2449-2456. PubMed ID: 32155339
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficient energy exchange between plasmon and cavity modes via Rabi-analogue splitting in a hybrid plasmonic nanocavity.
    Chen S; Li G; Lei D; Cheah KW
    Nanoscale; 2013 Oct; 5(19):9129-33. PubMed ID: 23913114
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Room-Temperature Strong Coupling Between a Single Quantum Dot and a Single Plasmonic Nanoparticle.
    Li JY; Li W; Liu J; Zhong J; Liu R; Chen H; Wang XH
    Nano Lett; 2022 Jun; 22(12):4686-4693. PubMed ID: 35638870
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Manipulating Coherent Plasmon-Exciton Interaction in a Single Silver Nanorod on Monolayer WSe
    Zheng D; Zhang S; Deng Q; Kang M; Nordlander P; Xu H
    Nano Lett; 2017 Jun; 17(6):3809-3814. PubMed ID: 28530102
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Double Rabi Splitting in a Strongly Coupled System of Core-Shell Au@Ag Nanorods and J-Aggregates of Multiple Fluorophores.
    Melnikau D; Govyadinov AA; Sánchez-Iglesias A; Grzelczak M; Nabiev IR; Liz-Marzán LM; Rakovich YP
    J Phys Chem Lett; 2019 Oct; 10(20):6137-6143. PubMed ID: 31557038
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Observation of Tunable Charged Exciton Polaritons in Hybrid Monolayer WS
    Cuadra J; Baranov DG; Wersäll M; Verre R; Antosiewicz TJ; Shegai T
    Nano Lett; 2018 Mar; 18(3):1777-1785. PubMed ID: 29369640
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Strong Coupling between Self-Assembled Molecules and Surface Plasmon Polaritons.
    Bigeon J; Le Liepvre S; Vassant S; Belabas N; Bardou N; Minot C; Yacomotti A; Levenson A; Charra F; Barbay S
    J Phys Chem Lett; 2017 Nov; 8(22):5626-5632. PubMed ID: 29094949
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantum Plexcitonic Sensing.
    Zheng P; Semancik S; Barman I
    Nano Lett; 2023 Oct; 23(20):9529-9537. PubMed ID: 37819891
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phonon-Driven Oscillatory Plasmonic Excitonic Nanomaterials.
    Kirschner MS; Ding W; Li Y; Chapman CT; Lei A; Lin XM; Chen LX; Schatz GC; Schaller RD
    Nano Lett; 2018 Jan; 18(1):442-448. PubMed ID: 29191022
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Strong Light-Matter Coupling between Plasmons in Individual Gold Bi-pyramids and Excitons in Mono- and Multilayer WSe
    Stührenberg M; Munkhbat B; Baranov DG; Cuadra J; Yankovich AB; Antosiewicz TJ; Olsson E; Shegai T
    Nano Lett; 2018 Sep; 18(9):5938-5945. PubMed ID: 30081635
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities.
    Dufferwiel S; Schwarz S; Withers F; Trichet AA; Li F; Sich M; Del Pozo-Zamudio O; Clark C; Nalitov A; Solnyshkov DD; Malpuech G; Novoselov KS; Smith JM; Skolnick MS; Krizhanovskii DN; Tartakovskii AI
    Nat Commun; 2015 Oct; 6():8579. PubMed ID: 26446783
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.