These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 23171302)

  • 61. Ultrastrong plasmon-exciton coupling in metal nanoprisms with J-aggregates.
    Balci S
    Opt Lett; 2013 Nov; 38(21):4498-501. PubMed ID: 24177129
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Exciton-Plasmon Coupling and Electromagnetically Induced Transparency in Monolayer Semiconductors Hybridized with Ag Nanoparticles.
    Zhao W; Wang S; Liu B; Verzhbitskiy I; Li S; Giustiniano F; Kozawa D; Loh KP; Matsuda K; Okamoto K; Oulton RF; Eda G
    Adv Mater; 2016 Apr; 28(14):2709-15. PubMed ID: 26835879
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Strong plasmon-exciton coupling between lithographically defined single metal nanoparticles and monolayer WSe
    Yan X; Wei H
    Nanoscale; 2020 May; 12(17):9708-9716. PubMed ID: 32323700
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Absorption enhancement of molecules in the weak plasmon-exciton coupling regime.
    Balci S; Karademir E; Kocabas C; Aydinli A
    Opt Lett; 2014 Sep; 39(17):4994-7. PubMed ID: 25166057
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Color-tunable emission of quantum dots via strong exciton-plasmon coupling in nanoporous gold structure at room temperature.
    Zhao X; Chen L; Chen J; Shi W; Liu F
    Opt Express; 2016 Sep; 24(18):20219-27. PubMed ID: 27607629
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Role of material loss and mode volume of plasmonic nanocavities for strong plasmon-exciton interactions.
    Yang ZJ; Antosiewicz TJ; Shegai T
    Opt Express; 2016 Sep; 24(18):20373-81. PubMed ID: 27607644
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Control of quantum emitter-plasmon strong coupling and energy transport with external electrostatic fields.
    Gettapola K; Hapuarachchi H; Stockman MI; Premaratne M
    J Phys Condens Matter; 2020 Mar; 32(12):125301. PubMed ID: 31770745
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Metallic nanoparticle shape and size effects on aluminum oxide-induced enhancement of exciton-plasmon coupling and quantum dot emission.
    Wing WJ; Sadeghi SM; Gutha RR; Campbell Q; Mao C
    J Appl Phys; 2015 Sep; 118(12):124302. PubMed ID: 26442574
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity.
    Peter E; Senellart P; Martrou D; Lemaître A; Hours J; Gérard JM; Bloch J
    Phys Rev Lett; 2005 Aug; 95(6):067401. PubMed ID: 16090987
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Metal-Semiconductor Nanoparticle Hybrids Formed by Self-Organization: A Platform to Address Exciton-Plasmon Coupling.
    Strelow C; Theuerholz TS; Schmidtke C; Richter M; Merkl JP; Kloust H; Ye Z; Weller H; Heinz TF; Knorr A; Lange H
    Nano Lett; 2016 Aug; 16(8):4811-8. PubMed ID: 27355971
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Controlled Strong Coupling and Absence of Dark Polaritons in Microcavities with Double Quantum Wells.
    Sivalertporn K; Muljarov EA
    Phys Rev Lett; 2015 Aug; 115(7):077401. PubMed ID: 26317745
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Cellphone Monitoring of Multi-Qubit Emission Enhancements from Pd-Carbon Plasmonic Nanocavities in Tunable Coupling Regimes with Attomolar Sensitivity.
    Srinivasan V; Manne AK; Patnaik SG; Ramamurthy SS
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):23281-8. PubMed ID: 27529116
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Strong coupling between localized and propagating plasmon polaritons.
    Balci S; Karademir E; Kocabas C
    Opt Lett; 2015 Jul; 40(13):3177-80. PubMed ID: 26125396
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Strong coupling in a single quantum dot-semiconductor microcavity system.
    Reithmaier JP; Sek G; Löffler A; Hofmann C; Kuhn S; Reitzenstein S; Keldysh LV; Kulakovskii VD; Reinecke TL; Forchel A
    Nature; 2004 Nov; 432(7014):197-200. PubMed ID: 15538362
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Room temperature strong coupling in a semiconductor microcavity with embedded AlGaAs quantum wells designed for polariton lasing.
    Suchomel H; Kreutzer S; Jörg M; Brodbeck S; Pieczarka M; Betzold S; Dietrich CP; Sęk G; Schneider C; Höfling S
    Opt Express; 2017 Oct; 25(20):24816-24826. PubMed ID: 29041294
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Strong Light-Matter Interactions in Single Open Plasmonic Nanocavities at the Quantum Optics Limit.
    Liu R; Zhou ZK; Yu YC; Zhang T; Wang H; Liu G; Wei Y; Chen H; Wang XH
    Phys Rev Lett; 2017 Jun; 118(23):237401. PubMed ID: 28644668
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Strong exciton-photon coupling in inorganic-organic multiple quantum wells embedded low-Q microcavity.
    Pradeesh K; Baumberg JJ; Prakash GV
    Opt Express; 2009 Nov; 17(24):22171-8. PubMed ID: 19997463
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Observation of Rabi splitting from surface plasmon coupled conduction state transitions in electrically excited InAs quantum dots.
    Passmore BS; Adams DC; Ribaudo T; Wasserman D; Lyon S; Davids P; Chow WW; Shaner EA
    Nano Lett; 2011 Feb; 11(2):338-42. PubMed ID: 21214167
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Biexcitons-plasmon coupling of Ag@Au hollow nanocube/MoS
    You Q; Zhang C; Wang Y; Bi X; Li Z; Zhang L; Zhang D; Fang Y; Wang P
    Opt Express; 2024 Mar; 32(6):9105-9115. PubMed ID: 38571151
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Strong-coupling of WSe
    Kleemann ME; Chikkaraddy R; Alexeev EM; Kos D; Carnegie C; Deacon W; de Pury AC; Große C; de Nijs B; Mertens J; Tartakovskii AI; Baumberg JJ
    Nat Commun; 2017 Nov; 8(1):1296. PubMed ID: 29101317
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.