BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 23171729)

  • 1. Calpain and atherosclerosis.
    Miyazaki T; Koya T; Kigawa Y; Oguchi T; Lei XF; Kim-Kaneyama JR; Miyazaki A
    J Atheroscler Thromb; 2013; 20(3):228-37. PubMed ID: 23171729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deficiency of ATP-Binding Cassette Transporters A1 and G1 in Endothelial Cells Accelerates Atherosclerosis in Mice.
    Westerterp M; Tsuchiya K; Tattersall IW; Fotakis P; Bochem AE; Molusky MM; Ntonga V; Abramowicz S; Parks JS; Welch CL; Kitajewski J; Accili D; Tall AR
    Arterioscler Thromb Vasc Biol; 2016 Jul; 36(7):1328-37. PubMed ID: 27199450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emerging roles of calpain proteolytic systems in macrophage cholesterol handling.
    Miyazaki T; Miyazaki A
    Cell Mol Life Sci; 2017 Aug; 74(16):3011-3021. PubMed ID: 28432377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dysregulation of Calpain Proteolytic Systems Underlies Degenerative Vascular Disorders.
    Miyazaki T; Miyazaki A
    J Atheroscler Thromb; 2018 Jan; 25(1):1-15. PubMed ID: 28819082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Postprandial lipoproteins and the molecular regulation of vascular homeostasis.
    Botham KM; Wheeler-Jones CP
    Prog Lipid Res; 2013 Oct; 52(4):446-64. PubMed ID: 23774609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leukocyte Calpain Deficiency Reduces Angiotensin II-Induced Inflammation and Atherosclerosis But Not Abdominal Aortic Aneurysms in Mice.
    Howatt DA; Balakrishnan A; Moorleghen JJ; Muniappan L; Rateri DL; Uchida HA; Takano J; Saido TC; Chishti AH; Baud L; Subramanian V
    Arterioscler Thromb Vasc Biol; 2016 May; 36(5):835-45. PubMed ID: 26966280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excess Nitric Oxide Activates TRPV1-Ca(2+)-Calpain Signaling and Promotes PEST-dependent Degradation of Liver X Receptor α.
    Zhao JF; Shyue SK; Lee TS
    Int J Biol Sci; 2016; 12(1):18-29. PubMed ID: 26722214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sage weed (Salvia plebeia) extract antagonizes foam cell formation and promotes cholesterol efflux in murine macrophages.
    Park SH; Kim JL; Kang MK; Gong JH; Han SY; Shim JH; Lim SS; Kang YH
    Int J Mol Med; 2012 Nov; 30(5):1105-12. PubMed ID: 22922992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. m-Calpain induction in vascular endothelial cells on human and mouse atheromas and its roles in VE-cadherin disorganization and atherosclerosis.
    Miyazaki T; Taketomi Y; Takimoto M; Lei XF; Arita S; Kim-Kaneyama JR; Arata S; Ohata H; Ota H; Murakami M; Miyazaki A
    Circulation; 2011 Dec; 124(23):2522-32. PubMed ID: 22064597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vitamin D Protects Against Atherosclerosis via Regulation of Cholesterol Efflux and Macrophage Polarization in Hypercholesterolemic Swine.
    Yin K; You Y; Swier V; Tang L; Radwan MM; Pandya AN; Agrawal DK
    Arterioscler Thromb Vasc Biol; 2015 Nov; 35(11):2432-42. PubMed ID: 26381871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endothelin-1 exacerbates lipid accumulation by increasing the protein degradation of the ATP-binding cassette transporter G1 in macrophages.
    Lin CY; Lee TS; Chen CC; Chang CA; Lin YJ; Hsu YP; Ho LT
    J Cell Physiol; 2011 Aug; 226(8):2198-205. PubMed ID: 21520072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular mechanism of curcumin on the suppression of cholesterol accumulation in macrophage foam cells and atherosclerosis.
    Zhao JF; Ching LC; Huang YC; Chen CY; Chiang AN; Kou YR; Shyue SK; Lee TS
    Mol Nutr Food Res; 2012 May; 56(5):691-701. PubMed ID: 22648616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dihydromyricetin ameliorates foam cell formation via LXRα-ABCA1/ABCG1-dependent cholesterol efflux in macrophages.
    Zeng Y; Peng Y; Tang K; Wang YQ; Zhao ZY; Wei XY; Xu XL
    Biomed Pharmacother; 2018 May; 101():543-552. PubMed ID: 29505925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LOX-1 in macrophage migration in response to ox-LDL and the involvement of calpains.
    Wang X; Ding Z; Lin J; Guo Z; Mehta JL
    Biochem Biophys Res Commun; 2015 Nov; 467(1):135-9. PubMed ID: 26393906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Porphyromonas gingivalis lipopolysaccharide increases lipid accumulation by affecting CD36 and ATP-binding cassette transporter A1 in macrophages.
    Li XY; Wang C; Xiang XR; Chen FC; Yang CM; Wu J
    Oncol Rep; 2013 Sep; 30(3):1329-36. PubMed ID: 23835648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined deletion of macrophage ABCA1 and ABCG1 leads to massive lipid accumulation in tissue macrophages and distinct atherosclerosis at relatively low plasma cholesterol levels.
    Out R; Hoekstra M; Habets K; Meurs I; de Waard V; Hildebrand RB; Wang Y; Chimini G; Kuiper J; Van Berkel TJ; Van Eck M
    Arterioscler Thromb Vasc Biol; 2008 Feb; 28(2):258-64. PubMed ID: 18006857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of foam cell formation in atherosclerosis.
    Chistiakov DA; Melnichenko AA; Myasoedova VA; Grechko AV; Orekhov AN
    J Mol Med (Berl); 2017 Nov; 95(11):1153-1165. PubMed ID: 28785870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ATP-binding cassette transporter A1 expression and apolipoprotein A-I binding are impaired in intima-type arterial smooth muscle cells.
    Choi HY; Rahmani M; Wong BW; Allahverdian S; McManus BM; Pickering JG; Chan T; Francis GA
    Circulation; 2009 Jun; 119(25):3223-31. PubMed ID: 19528336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excess nitric oxide impairs LXR(α)-ABCA1-dependent cholesterol efflux in macrophage foam cells.
    Zhao JF; Shyue SK; Lin SJ; Wei J; Lee TS
    J Cell Physiol; 2014 Jan; 229(1):117-25. PubMed ID: 23836449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leonurine Prevents Atherosclerosis Via Promoting the Expression of ABCA1 and ABCG1 in a Pparγ/Lxrα Signaling Pathway-Dependent Manner.
    Jiang T; Ren K; Chen Q; Li H; Yao R; Hu H; Lv YC; Zhao GJ
    Cell Physiol Biochem; 2017; 43(4):1703-1717. PubMed ID: 29045950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.