These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 23172009)

  • 41. Cochlear implant users rely on tempo rather than on pitch information during perception of musical emotion.
    Caldwell M; Rankin SK; Jiradejvong P; Carver C; Limb CJ
    Cochlear Implants Int; 2015 Sep; 16 Suppl 3():S114-20. PubMed ID: 26561882
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Vowel identification by cochlear implant users: contributions of static and dynamic spectral cues.
    Donaldson GS; Rogers CL; Cardenas ES; Russell BA; Hanna NH
    J Acoust Soc Am; 2013 Oct; 134(4):3021-8. PubMed ID: 24116437
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Musical pitch discrimination by cochlear implant users.
    Ping L; Yuan M; Feng H
    Ann Otol Rhinol Laryngol; 2012 May; 121(5):328-36. PubMed ID: 22724279
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Harmonic Frequency Lowering: Effects on the Perception of Music Detail and Sound Quality.
    Kirchberger M; Russo FA
    Trends Hear; 2016 Feb; 20():. PubMed ID: 26834122
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cochlear-implant spatial selectivity with monopolar, bipolar and tripolar stimulation.
    Zhu Z; Tang Q; Zeng FG; Guan T; Ye D
    Hear Res; 2012 Jan; 283(1-2):45-58. PubMed ID: 22138630
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The MMN as a viable and objective marker of auditory development in CI users.
    Näätänen R; Petersen B; Torppa R; Lonka E; Vuust P
    Hear Res; 2017 Sep; 353():57-75. PubMed ID: 28800468
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Music perception with cochlear implants: a review.
    McDermott HJ
    Trends Amplif; 2004; 8(2):49-82. PubMed ID: 15497033
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Discrimination of intonation contours by adolescents with cochlear implants.
    Holt CM; McDermott HJ
    Int J Audiol; 2013 Dec; 52(12):808-15. PubMed ID: 24053225
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electric-acoustic pitch comparisons in single-sided-deaf cochlear implant users: frequency-place functions and rate pitch.
    Schatzer R; Vermeire K; Visser D; Krenmayr A; Kals M; Voormolen M; Van de Heyning P; Zierhofer C
    Hear Res; 2014 Mar; 309():26-35. PubMed ID: 24252455
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Speech perception in simulated electric hearing exploits information-bearing acoustic change.
    Stilp CE; Goupell MJ; Kluender KR
    J Acoust Soc Am; 2013 Feb; 133(2):EL136-41. PubMed ID: 23363194
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Temporal modulation transfer functions in cochlear implantees using a method that limits overall loudness cues.
    Fraser M; McKay CM
    Hear Res; 2012 Jan; 283(1-2):59-69. PubMed ID: 22146425
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Perception of musical timbre by cochlear implant listeners: a multidimensional scaling study.
    Macherey O; Delpierre A
    Ear Hear; 2013; 34(4):426-36. PubMed ID: 23334356
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Predicting the speech reception threshold of cochlear implant listeners using an envelope-correlation based measure.
    Yousefian N; Loizou PC
    J Acoust Soc Am; 2012 Nov; 132(5):3399-405. PubMed ID: 23145620
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The perception of prosody and associated auditory cues in early-implanted children: the role of auditory working memory and musical activities.
    Torppa R; Faulkner A; Huotilainen M; Järvikivi J; Lipsanen J; Laasonen M; Vainio M
    Int J Audiol; 2014 Mar; 53(3):182-91. PubMed ID: 24460045
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Acoustic Analysis of Persian Vowels in Cochlear Implant Users: A Comparison With Hearing-impaired Children Using Hearing Aid and Normal-hearing Children.
    Jafari N; Yadegari F; Jalaie S
    J Voice; 2016 Nov; 30(6):763.e1-763.e7. PubMed ID: 26725549
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of envelope bandwidth on importance functions for cochlear implant simulations.
    Whitmal NA; DeMaio D; Lin R
    J Acoust Soc Am; 2015 Feb; 137(2):733-44. PubMed ID: 25698008
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Training of cochlear implant users to improve pitch perception in the presence of competing place cues.
    Vandali A; Sly D; Cowan R; van Hoesel R
    Ear Hear; 2015; 36(2):e1-e13. PubMed ID: 25329372
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Internalized elevation perception of simple stimuli in cochlear-implant and normal-hearing listeners.
    Thakkar T; Goupell MJ
    J Acoust Soc Am; 2014 Aug; 136(2):841-52. PubMed ID: 25096117
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of speaking style on speech intelligibility for Mandarin-speaking cochlear implant users.
    Li Y; Zhang G; Kang HY; Liu S; Han D; Fu QJ
    J Acoust Soc Am; 2011 Jun; 129(6):EL242-7. PubMed ID: 21682359
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Detection of acoustic temporal fine structure by cochlear implant listeners: behavioral results and computational modeling.
    Imennov NS; Won JH; Drennan WR; Jameyson E; Rubinstein JT
    Hear Res; 2013 Apr; 298():60-72. PubMed ID: 23333260
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.