BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 23172588)

  • 1. Comparative analysis of salt-responsive phosphoproteins in maize leaves using Ti(4+)--IMAC enrichment and ESI-Q-TOF MS.
    Hu Y; Guo S; Li X; Ren X
    Electrophoresis; 2013 Feb; 34(4):485-92. PubMed ID: 23172588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ti(4+)-phosphate functionalized cellulose for phosphopeptides enrichment and its application in rice phosphoproteome analysis.
    Shen F; Hu Y; Guan P; Ren X
    J Chromatogr B Analyt Technol Biomed Life Sci; 2012 Aug; 902():108-15. PubMed ID: 22795554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative proteomic analysis of early salt stress responsive proteins in roots and leaves of rice.
    Liu CW; Chang TS; Hsu YK; Wang AZ; Yen HC; Wu YP; Wang CS; Lai CC
    Proteomics; 2014 Aug; 14(15):1759-75. PubMed ID: 24841874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteome and phosphoproteome characterization reveals new response and defense mechanisms of Brachypodium distachyon leaves under salt stress.
    Lv DW; Subburaj S; Cao M; Yan X; Li X; Appels R; Sun DF; Ma W; Yan YM
    Mol Cell Proteomics; 2014 Feb; 13(2):632-52. PubMed ID: 24335353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of phosphorylated proteins.
    Turkina MV; Vener AV
    Methods Mol Biol; 2007; 355():305-16. PubMed ID: 17093319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological and proteomic characterization of salt tolerance in a mangrove plant, Bruguiera gymnorrhiza (L.) Lam.
    Zhu Z; Chen J; Zheng HL
    Tree Physiol; 2012 Nov; 32(11):1378-88. PubMed ID: 23100256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thylakoid phosphoproteins: identification of phosphorylation sites.
    Rokka A; Aro EM; Vener AV
    Methods Mol Biol; 2011; 684():171-86. PubMed ID: 20960130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revealing phosphoproteins playing role in tobacco pollen activated in vitro.
    Fíla J; Matros A; Radau S; Zahedi RP; Capková V; Mock HP; Honys D
    Proteomics; 2012 Nov; 12(21):3229-50. PubMed ID: 22976843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological and proteomic analysis of salinity tolerance in Puccinellia tenuiflora.
    Yu J; Chen S; Zhao Q; Wang T; Yang C; Diaz C; Sun G; Dai S
    J Proteome Res; 2011 Sep; 10(9):3852-70. PubMed ID: 21732589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteome and phosphoproteome differential expression under salinity stress in rice (Oryza sativa) roots.
    Chitteti BR; Peng Z
    J Proteome Res; 2007 May; 6(5):1718-27. PubMed ID: 17385905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative proteomic analysis of canola leaves under salinity stress.
    Bandehagh A; Salekdeh GH; Toorchi M; Mohammadi A; Komatsu S
    Proteomics; 2011 May; 11(10):1965-75. PubMed ID: 21480525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward a global characterization of the phosphoproteome in prostate cancer cells: identification of phosphoproteins in the LNCaP cell line.
    Giorgianni F; Zhao Y; Desiderio DM; Beranova-Giorgianni S
    Electrophoresis; 2007 Jun; 28(12):2027-34. PubMed ID: 17487921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specific phosphopeptide enrichment with immobilized titanium ion affinity chromatography adsorbent for phosphoproteome analysis.
    Zhou H; Ye M; Dong J; Han G; Jiang X; Wu R; Zou H
    J Proteome Res; 2008 Sep; 7(9):3957-67. PubMed ID: 18630941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative proteomics and phosphoproteomics of sugar beet monosomic addition line M14 in response to salt stress.
    Yu B; Li J; Koh J; Dufresne C; Yang N; Qi S; Zhang Y; Ma C; Duong BV; Chen S; Li H
    J Proteomics; 2016 Jun; 143():286-297. PubMed ID: 27233743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphoproteins analysis in plants: a proteomic approach.
    Laugesen S; Messinese E; Hem S; Pichereaux C; Grat S; Ranjeva R; Rossignol M; Bono JJ
    Phytochemistry; 2006 Oct; 67(20):2208-14. PubMed ID: 16962150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative iTRAQ-based proteomic analysis of phosphoproteins and ABA-regulated phosphoproteins in maize leaves under osmotic stress.
    Hu X; Li N; Wu L; Li C; Li C; Zhang L; Liu T; Wang W
    Sci Rep; 2015 Oct; 5():15626. PubMed ID: 26503333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrative network analysis of the signaling cascades in seedling leaves of bread wheat by large-scale phosphoproteomic profiling.
    Lv DW; Ge P; Zhang M; Cheng ZW; Li XH; Yan YM
    J Proteome Res; 2014 May; 13(5):2381-95. PubMed ID: 24679076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative analysis of phytohormone-responsive phosphoproteins in Arabidopsis thaliana using TiO2-phosphopeptide enrichment and mass accuracy precursor alignment.
    Chen Y; Hoehenwarter W; Weckwerth W
    Plant J; 2010 Jul; 63(1):1-17. PubMed ID: 20374526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and loading buffer study of polyvinyl alcohol-based immobilized Ti4+ affinity chromatography for phosphopeptide enrichment.
    Hu Y; Guo S; Ma H; Ye N; Ren X
    J Sep Sci; 2013 Nov; 36(21-22):3563-70. PubMed ID: 24027161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of Leishmania-specific protein phosphorylation sites by LC-ESI-MS/MS and comparative genomics analyses.
    Hem S; Gherardini PF; Osorio y Fortéa J; Hourdel V; Morales MA; Watanabe R; Pescher P; Kuzyk MA; Smith D; Borchers CH; Zilberstein D; Helmer-Citterich M; Namane A; Späth GF
    Proteomics; 2010 Nov; 10(21):3868-83. PubMed ID: 20960452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.