These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 23172680)
1. Correlations between the dielectric properties and exterior morphology of cells revealed by dielectrophoretic field-flow fractionation. Gascoyne PR; Shim S; Noshari J; Becker FF; Stemke-Hale K Electrophoresis; 2013 Apr; 34(7):1042-50. PubMed ID: 23172680 [TBL] [Abstract][Full Text] [Related]
2. Dielectrophoretic-field flow fractionation analysis of dielectric, density, and deformability characteristics of cells and particles. Gascoyne PR Anal Chem; 2009 Nov; 81(21):8878-85. PubMed ID: 19791772 [TBL] [Abstract][Full Text] [Related]
3. Enrichment of putative stem cells from adipose tissue using dielectrophoretic field-flow fractionation. Vykoukal J; Vykoukal DM; Freyberg S; Alt EU; Gascoyne PR Lab Chip; 2008 Aug; 8(8):1386-93. PubMed ID: 18651083 [TBL] [Abstract][Full Text] [Related]
4. Dielectrophoresis has broad applicability to marker-free isolation of tumor cells from blood by microfluidic systems. Shim S; Stemke-Hale K; Noshari J; Becker FF; Gascoyne PR Biomicrofluidics; 2013; 7(1):11808. PubMed ID: 24403990 [TBL] [Abstract][Full Text] [Related]
5. On the design of deterministic dielectrophoresis for continuous separation of circulating tumor cells from peripheral blood cells. Aghaamoo M; Aghilinejad A; Chen X; Xu J Electrophoresis; 2019 May; 40(10):1486-1493. PubMed ID: 30740752 [TBL] [Abstract][Full Text] [Related]
6. Examination of the dielectrophoretic spectra of MCF7 breast cancer cells and leukocytes. Çağlayan Z; Demircan Yalçın Y; Külah H Electrophoresis; 2020 Mar; 41(5-6):345-352. PubMed ID: 31925804 [TBL] [Abstract][Full Text] [Related]
7. Highlighting the uniqueness in dielectrophoretic enrichment of circulating tumor cells. S Iliescu F; Sim WJ; Heidari H; P Poenar D; Miao J; Taylor HK; Iliescu C Electrophoresis; 2019 May; 40(10):1457-1477. PubMed ID: 30676660 [TBL] [Abstract][Full Text] [Related]
8. Isolation of rare cells from cell mixtures by dielectrophoresis. Gascoyne PR; Noshari J; Anderson TJ; Becker FF Electrophoresis; 2009 Apr; 30(8):1388-98. PubMed ID: 19306266 [TBL] [Abstract][Full Text] [Related]
9. Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP). Moon HS; Kwon K; Kim SI; Han H; Sohn J; Lee S; Jung HI Lab Chip; 2011 Mar; 11(6):1118-25. PubMed ID: 21298159 [TBL] [Abstract][Full Text] [Related]
10. Dielectrophoresis-field flow fractionation for separation of particles: A critical review. Waheed W; Sharaf OZ; Alazzam A; Abu-Nada E J Chromatogr A; 2021 Jan; 1637():461799. PubMed ID: 33385744 [TBL] [Abstract][Full Text] [Related]
11. Isolation of circulating tumor cells by dielectrophoresis. Gascoyne PR; Shim S Cancers (Basel); 2014 Mar; 6(1):545-79. PubMed ID: 24662940 [TBL] [Abstract][Full Text] [Related]
12. Label-free enrichment of MCF7 breast cancer cells from leukocytes using continuous flow dielectrophoresis. Çağlayan Arslan Z; Demircan Yalçın Y; Külah H Electrophoresis; 2022 Jul; 43(13-14):1531-1544. PubMed ID: 35318696 [TBL] [Abstract][Full Text] [Related]
13. Lateral fluid flow fractionation using dielectrophoresis (LFFF-DEP) for size-independent, label-free isolation of circulating tumor cells. Waheed W; Alazzam A; Mathew B; Christoforou N; Abu-Nada E J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Jun; 1087-1088():133-137. PubMed ID: 29734073 [TBL] [Abstract][Full Text] [Related]
14. A simplified sheathless cell separation approach using combined gravitational-sedimentation-based prefocusing and dielectrophoretic separation. Luo T; Fan L; Zeng Y; Liu Y; Chen S; Tan Q; Lam RHW; Sun D Lab Chip; 2018 May; 18(11):1521-1532. PubMed ID: 29725680 [TBL] [Abstract][Full Text] [Related]
15. Contactless dielectrophoretic spectroscopy: examination of the dielectric properties of cells found in blood. Sano MB; Henslee EA; Schmelz E; Davalos RV Electrophoresis; 2011 Nov; 32(22):3164-71. PubMed ID: 22102497 [TBL] [Abstract][Full Text] [Related]
16. Differential dielectric responses of chondrocyte and Jurkat cells in electromanipulation buffers. Sabuncu AC; Asmar AJ; Stacey MW; Beskok A Electrophoresis; 2015 Jul; 36(13):1499-506. PubMed ID: 25958778 [TBL] [Abstract][Full Text] [Related]
17. Cell separation by dielectrophoretic field-flow-fractionation. Wang XB; Yang J; Huang Y; Vykoukal J; Becker FF; Gascoyne PR Anal Chem; 2000 Feb; 72(4):832-9. PubMed ID: 10701270 [TBL] [Abstract][Full Text] [Related]
18. Analysis of the role of the particle-wall interaction on the separation efficiencies of field flow fractionation dielectrophoretic devices. Camarda M; Scalese S; La Magna A Electrophoresis; 2015 Jul; 36(13):1396-404. PubMed ID: 25487144 [TBL] [Abstract][Full Text] [Related]
19. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells. Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906 [TBL] [Abstract][Full Text] [Related]
20. High-throughput dynamical analysis of dielectrophoretic frequency dispersion of single cells based on deflected flow streamlines. Torres-Castro K; Honrado C; Varhue WB; Farmehini V; Swami NS Anal Bioanal Chem; 2020 Jun; 412(16):3847-3857. PubMed ID: 32128645 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]