These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 23172850)

  • 21. Cyclic AMP-independent regulation of protein kinase A substrate phosphorylation by Kelch repeat proteins.
    Lu A; Hirsch JP
    Eukaryot Cell; 2005 Nov; 4(11):1794-800. PubMed ID: 16278446
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sgt1p contributes to cyclic AMP pathway activity and physically interacts with the adenylyl cyclase Cyr1p/Cdc35p in budding yeast.
    Dubacq C; Guerois R; Courbeyrette R; Kitagawa K; Mann C
    Eukaryot Cell; 2002 Aug; 1(4):568-82. PubMed ID: 12456005
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cell Distribution within Yeast Colonies and Colony Biofilms: How Structure Develops.
    Plocek V; Váchová L; Šťovíček V; Palková Z
    Int J Mol Sci; 2020 May; 21(11):. PubMed ID: 32485964
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A mitochondrial CO2-adenylyl cyclase-cAMP signalosome controls yeast normoxic cytochrome c oxidase activity.
    Hess KC; Liu J; Manfredi G; Mühlschlegel FA; Buck J; Levin LR; Barrientos A
    FASEB J; 2014 Oct; 28(10):4369-80. PubMed ID: 25002117
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Schizosaccharomyces pombe Git7p, a member of the Saccharomyces cerevisiae Sgtlp family, is required for glucose and cyclic AMP signaling, cell wall integrity, and septation.
    Schadick K; Fourcade HM; Boumenot P; Seitz JJ; Morrell JL; Chang L; Gould KL; Partridge JF; Allshire RC; Kitagawa K; Hieter P; Hoffman CS
    Eukaryot Cell; 2002 Aug; 1(4):558-67. PubMed ID: 12456004
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The in vivo activity of Ime1, the key transcriptional activator of meiosis-specific genes in Saccharomyces cerevisiae, is inhibited by the cyclic AMP/protein kinase A signal pathway through the glycogen synthase kinase 3-beta homolog Rim11.
    Rubin-Bejerano I; Sagee S; Friedman O; Pnueli L; Kassir Y
    Mol Cell Biol; 2004 Aug; 24(16):6967-79. PubMed ID: 15282298
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cyclic AMP-protein kinase A and Snf1 signaling mechanisms underlie the superior potency of sucrose for induction of filamentation in Saccharomyces cerevisiae.
    Van de Velde S; Thevelein JM
    Eukaryot Cell; 2008 Feb; 7(2):286-93. PubMed ID: 17890371
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The transcription factor Swi4 is target for PKA regulation of cell size at the G1 to S transition in Saccharomyces cerevisiae.
    Amigoni L; Colombo S; Belotti F; Alberghina L; Martegani E
    Cell Cycle; 2015 Aug; 14(15):2429-38. PubMed ID: 26046481
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene.
    Rupp S; Summers E; Lo HJ; Madhani H; Fink G
    EMBO J; 1999 Mar; 18(5):1257-69. PubMed ID: 10064592
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Snf1 Phosphorylates Adenylate Cyclase and Negatively Regulates Protein Kinase A-dependent Transcription in Saccharomyces cerevisiae.
    Nicastro R; Tripodi F; Gaggini M; Castoldi A; Reghellin V; Nonnis S; Tedeschi G; Coccetti P
    J Biol Chem; 2015 Oct; 290(41):24715-26. PubMed ID: 26309257
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genetic basis for Saccharomyces cerevisiae biofilm in liquid medium.
    Scherz K; Andersen ; Bojsen R; Gro L; Rejkjær ; Sørensen ; Weiss M; Nielsen ; Lisby M; Folkesson A; Regenberg B
    G3 (Bethesda); 2014 Jul; 4(9):1671-80. PubMed ID: 25009170
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A mutation in Saccharomyces cerevisiae adenylate cyclase, Cyr1K1876M, specifically affects glucose- and acidification-induced cAMP signalling and not the basal cAMP level.
    Vanhalewyn M; Dumortier F; Debast G; Colombo S; Ma P; Winderickx J; Van Dijck P; Thevelein JM
    Mol Microbiol; 1999 Jul; 33(2):363-76. PubMed ID: 10411752
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The small molecule triclabendazole decreases the intracellular level of cyclic AMP and increases resistance to stress in Saccharomyces cerevisiae.
    Lee YJ; Shi R; Witt SN
    PLoS One; 2013; 8(5):e64337. PubMed ID: 23667708
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crosstalk between cAMP-PKA and MAP kinase pathways is a key regulatory design necessary to regulate FLO11 expression.
    Sengupta N; Vinod PK; Venkatesh KV
    Biophys Chem; 2007 Jan; 125(1):59-71. PubMed ID: 16863676
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Ras/cAMP pathway and the CDK-like kinase Ime2 regulate the MAPK Smk1 and spore morphogenesis in Saccharomyces cerevisiae.
    McDonald CM; Wagner M; Dunham MJ; Shin ME; Ahmed NT; Winter E
    Genetics; 2009 Feb; 181(2):511-23. PubMed ID: 19087957
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multiple MAPK cascades regulate the transcription of IME1, the master transcriptional activator of meiosis in Saccharomyces cerevisiae.
    Kahana-Edwin S; Stark M; Kassir Y
    PLoS One; 2013; 8(11):e78920. PubMed ID: 24236068
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae.
    Pan X; Heitman J
    Mol Cell Biol; 1999 Jul; 19(7):4874-87. PubMed ID: 10373537
    [TBL] [Abstract][Full Text] [Related]  

  • 38. cAMP/PKA signaling balances respiratory activity with mitochondria dependent apoptosis via transcriptional regulation.
    Leadsham JE; Gourlay CW
    BMC Cell Biol; 2010 Nov; 11():92. PubMed ID: 21108829
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Model-guided optogenetic study of PKA signaling in budding yeast.
    Stewart-Ornstein J; Chen S; Bhatnagar R; Weissman JS; El-Samad H
    Mol Biol Cell; 2017 Jan; 28(1):221-227. PubMed ID: 28035051
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Natural variation in non-coding regions underlying phenotypic diversity in budding yeast.
    Salinas F; de Boer CG; Abarca V; García V; Cuevas M; Araos S; Larrondo LF; Martínez C; Cubillos FA
    Sci Rep; 2016 Feb; 6():21849. PubMed ID: 26898953
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.