These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 23173068)

  • 1. Stabilizers of neuronal and mitochondrial calcium cycling as a strategy for developing a medicine for Alzheimer's disease.
    Fernández-Morales JC; Arranz-Tagarro JA; Calvo-Gallardo E; Maroto M; Padín JF; García AG
    ACS Chem Neurosci; 2012 Nov; 3(11):873-83. PubMed ID: 23173068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial Calcium Deregulation in the Mechanism of Beta-Amyloid and Tau Pathology.
    Esteras N; Abramov AY
    Cells; 2020 Sep; 9(9):. PubMed ID: 32967303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in the multitarget-directed ligands approach for the treatment of Alzheimer's disease.
    León R; Garcia AG; Marco-Contelles J
    Med Res Rev; 2013 Jan; 33(1):139-89. PubMed ID: 21793014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elevating the Levels of Calcium Ions Exacerbate Alzheimer's Disease via Inducing the Production and Aggregation of β-Amyloid Protein and Phosphorylated Tau.
    Guan PP; Cao LL; Wang P
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34072743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium signaling in Alzheimer's disease & therapies.
    Tong BC; Wu AJ; Li M; Cheung KH
    Biochim Biophys Acta Mol Cell Res; 2018 Nov; 1865(11 Pt B):1745-1760. PubMed ID: 30059692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased mitochondrial calcium levels associated with neuronal death in a mouse model of Alzheimer's disease.
    Calvo-Rodriguez M; Hou SS; Snyder AC; Kharitonova EK; Russ AN; Das S; Fan Z; Muzikansky A; Garcia-Alloza M; Serrano-Pozo A; Hudry E; Bacskai BJ
    Nat Commun; 2020 May; 11(1):2146. PubMed ID: 32358564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The participation of insulin-like growth factor-binding protein 3 released by astrocytes in the pathology of Alzheimer's disease.
    Watanabe K; Uemura K; Asada M; Maesako M; Akiyama H; Shimohama S; Takahashi R; Kinoshita A
    Mol Brain; 2015 Dec; 8(1):82. PubMed ID: 26637371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amyloid-Beta Modulates Low-Threshold Activated Voltage-Gated L-Type Calcium Channels of Arcuate Neuropeptide Y Neurons Leading to Calcium Dysregulation and Hypothalamic Dysfunction.
    Ishii M; Hiller AJ; Pham L; McGuire MJ; Iadecola C; Wang G
    J Neurosci; 2019 Oct; 39(44):8816-8825. PubMed ID: 31537707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tau localises within mitochondrial sub-compartments and its caspase cleavage affects ER-mitochondria interactions and cellular Ca
    Cieri D; Vicario M; Vallese F; D'Orsi B; Berto P; Grinzato A; Catoni C; De Stefani D; Rizzuto R; Brini M; Calì T
    Biochim Biophys Acta Mol Basis Dis; 2018 Oct; 1864(10):3247-3256. PubMed ID: 30006151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Na
    Pannaccione A; Piccialli I; Secondo A; Ciccone R; Molinaro P; Boscia F; Annunziato L
    Cell Calcium; 2020 May; 87():102190. PubMed ID: 32199208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amyloid-β toxicity and tau hyperphosphorylation are linked via RCAN1 in Alzheimer's disease.
    Lloret A; Badia MC; Giraldo E; Ermak G; Alonso MD; Pallardó FV; Davies KJ; Viña J
    J Alzheimers Dis; 2011; 27(4):701-9. PubMed ID: 21876249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyruvate prevents the development of age-dependent cognitive deficits in a mouse model of Alzheimer's disease without reducing amyloid and tau pathology.
    Isopi E; Granzotto A; Corona C; Bomba M; Ciavardelli D; Curcio M; Canzoniero LM; Navarra R; Lattanzio R; Piantelli M; Sensi SL
    Neurobiol Dis; 2015 Sep; 81():214-24. PubMed ID: 25434488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium and neuronal injury in Alzheimer's disease. Contributions of beta-amyloid precursor protein mismetabolism, free radicals, and metabolic compromise.
    Mattson MP
    Ann N Y Acad Sci; 1994 Dec; 747():50-76. PubMed ID: 7847692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artemether Activation of AMPK/GSK3
    Li S; Zhao X; Lazarovici P; Zheng W
    Oxid Med Cell Longev; 2019; 2019():1862437. PubMed ID: 31871541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amyloid Beta and Phosphorylated Tau-Induced Defective Autophagy and Mitophagy in Alzheimer's Disease.
    Reddy PH; Oliver DM
    Cells; 2019 May; 8(5):. PubMed ID: 31121890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ca
    Wang X; Zheng W
    FASEB J; 2019 Jun; 33(6):6697-6712. PubMed ID: 30848934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The molecular bases of Alzheimer's disease and other neurodegenerative disorders.
    Maccioni RB; Muñoz JP; Barbeito L
    Arch Med Res; 2001; 32(5):367-81. PubMed ID: 11578751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondria are a direct site of A beta accumulation in Alzheimer's disease neurons: implications for free radical generation and oxidative damage in disease progression.
    Manczak M; Anekonda TS; Henson E; Park BS; Quinn J; Reddy PH
    Hum Mol Genet; 2006 May; 15(9):1437-49. PubMed ID: 16551656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium Dyshomeostasis in Alzheimer's Disease Pathogenesis.
    Cascella R; Cecchi C
    Int J Mol Sci; 2021 May; 22(9):. PubMed ID: 34066371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alzheimer's disease.
    De-Paula VJ; Radanovic M; Diniz BS; Forlenza OV
    Subcell Biochem; 2012; 65():329-52. PubMed ID: 23225010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.