These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
82 related articles for article (PubMed ID: 2317370)
1. Use of a fluorescent chloramphenicol derivative as a substrate for CAT assays. Hruby DE; Brinkley JM; Kang HC; Haugland RP; Young SL; Melner MH Biotechniques; 1990 Feb; 8(2):170-1. PubMed ID: 2317370 [No Abstract] [Full Text] [Related]
2. Quantitative nonradioactive CAT assays using fluorescent BODIPY 1-deoxychloramphenicol substrates. Lefevre CK; Singer VL; Kang HC; Haugland RP Biotechniques; 1995 Sep; 19(3):488-93. PubMed ID: 7495564 [TBL] [Abstract][Full Text] [Related]
3. Use of fluorescent chloramphenicol derivative as a substrate for chloramphenicol acetyltransferase assays. Hruby DE; Wilson EM Methods Enzymol; 1992; 216():369-76. PubMed ID: 1479909 [No Abstract] [Full Text] [Related]
4. A novel substrate for assays of gene expression using chloramphenicol acetyltransferase. Murray IA; Lewendon A; Williams JA; Cullis PM; Lashford AG; Shaw WV Nucleic Acids Res; 1991 Dec; 19(23):6648. PubMed ID: 1754406 [No Abstract] [Full Text] [Related]
5. Direct measurement of CAT activity by incubation of CAT-expressing cells in medium containing chloramphenicol. Alter DC; Subramanian KN Biotechniques; 1988 Jun; 6(6):526-30. PubMed ID: 3273185 [TBL] [Abstract][Full Text] [Related]
6. Fluorescent chloramphenicol as a substitute for radioactive [14C]-chloramphenicol for CAT reporter assays in Plasmodium falciparum. Balu B; Adams JH Mol Biochem Parasitol; 2003 Feb; 126(2):285-6. PubMed ID: 12615328 [No Abstract] [Full Text] [Related]
7. A procedure to standardize CAT reporter gene assay. Abken H; Reifenrath B Nucleic Acids Res; 1992 Jul; 20(13):3527. PubMed ID: 1630936 [No Abstract] [Full Text] [Related]
8. Simple screening for the presence of antibiotic resistant CAT gene plasmids in bacteria. Alter DC; Ramanujam P; Yamaguchi J; Subramanian KN Biotechniques; 1989 Mar; 7(3):247-8. PubMed ID: 2631771 [No Abstract] [Full Text] [Related]
9. Enzymatic inactivation and reactivation of chloramphenicol by Mycobacterium tuberculosis and Mycobacterium bovis. Sohaskey CD FEMS Microbiol Lett; 2004 Nov; 240(2):187-92. PubMed ID: 15522506 [TBL] [Abstract][Full Text] [Related]
10. Mutations in the chloramphenicol acetyltransferase (S61G, Y105C) increase accumulated amounts and resistance in Pseudomonas aeruginosa. Wang J; Liu JH FEMS Microbiol Lett; 2004 Jul; 236(2):197-204. PubMed ID: 15251197 [TBL] [Abstract][Full Text] [Related]
11. Detection of recombinant protein based on reporter enzyme activity: chloramphenicol acetyltransferase. Lee P; Hruby DE Methods Mol Biol; 1997; 63():31-40. PubMed ID: 9113638 [No Abstract] [Full Text] [Related]
12. Regioselective Acetylation of C21 Hydroxysteroids by the Bacterial Chloramphenicol Acetyltransferase I. Mosa A; Hutter MC; Zapp J; Bernhardt R; Hannemann F Chembiochem; 2015 Jul; 16(11):1670-9. PubMed ID: 25999128 [TBL] [Abstract][Full Text] [Related]
13. Analysis of hydrogen bonding in enzyme-substrate complexes of chloramphenicol acetyltransferase by infrared spectroscopy and site-directed mutagenesis. Murray IA; Derrick JP; White AJ; Drabble K; Wharton CW; Shaw WV Biochemistry; 1994 Aug; 33(33):9826-30. PubMed ID: 8060990 [TBL] [Abstract][Full Text] [Related]
14. Direct determination of chloramphenicol acetyltransferase (CAT) activity in homogenates of transfected mammalian cells by high performance liquid chromatography. Siegert H; Wittig B; Wölfl S J Clin Chem Clin Biochem; 1990 Apr; 28(4):217-9. PubMed ID: 2358791 [TBL] [Abstract][Full Text] [Related]
15. Alternative binding modes for chloramphenicol and 1-substituted chloramphenicol analogues revealed by site-directed mutagenesis and X-ray crystallography of chloramphenicol acetyltransferase. Murray IA; Lewendon A; Williams JA; Cullis PM; Shaw WV; Leslie AG Biochemistry; 1991 Apr; 30(15):3763-70. PubMed ID: 2015231 [TBL] [Abstract][Full Text] [Related]
16. Fusions to chloramphenicol acetyltransferase as a reporter. Bullock C; Gorman C Methods Enzymol; 2000; 326():202-21. PubMed ID: 11036644 [No Abstract] [Full Text] [Related]
17. A nonradioactive assay for transfected chloramphenicol acetyltransferase activity using fluorescent substrates. Young SL; Barbera L; Kaynard AH; Haugland RP; Kang HC; Brinkley M; Melner MH Anal Biochem; 1991 Sep; 197(2):401-7. PubMed ID: 1785695 [TBL] [Abstract][Full Text] [Related]
18. Esterases in serum-containing growth media counteract chloramphenicol acetyltransferase activity in vitro. Sohaskey CD; Barbour AG Antimicrob Agents Chemother; 1999 Mar; 43(3):655-60. PubMed ID: 10049283 [TBL] [Abstract][Full Text] [Related]
19. Construction and analysis of a modified Tn4001 conferring chloramphenicol resistance in Mycoplasma pneumoniae. Hahn TW; Mothershed EA; Waldo RH; Krause DC Plasmid; 1999 Mar; 41(2):120-4. PubMed ID: 10087215 [TBL] [Abstract][Full Text] [Related]
20. Fluorinated chloramphenicol acetyltransferase thermostability and activity profile: improved thermostability by a single-isoleucine mutant. Voloshchuk N; Lee MX; Zhu WW; Tanrikulu IC; Montclare JK Bioorg Med Chem Lett; 2007 Nov; 17(21):5907-11. PubMed ID: 17845847 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]