These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 23173897)
1. Evidence that an evolutionary transition from dehiscent to indehiscent fruits in Lepidium (Brassicaceae) was caused by a change in the control of valve margin identity genes. Mühlhausen A; Lenser T; Mummenhoff K; Theißen G Plant J; 2013 Mar; 73(5):824-35. PubMed ID: 23173897 [TBL] [Abstract][Full Text] [Related]
2. Lepidium as a model system for studying the evolution of fruit development in Brassicaceae. Mummenhoff K; Polster A; Mühlhausen A; Theissen G J Exp Bot; 2009; 60(5):1503-13. PubMed ID: 19052256 [TBL] [Abstract][Full Text] [Related]
3. Comparative transcriptomics identifies candidate genes involved in the evolutionary transition from dehiscent to indehiscent fruits in Lepidium (Brassicaceae). Gramzow L; Klupsch K; Fernández-Pozo N; Hölzer M; Marz M; Rensing SA; Theißen G BMC Plant Biol; 2022 Jul; 22(1):340. PubMed ID: 35836106 [TBL] [Abstract][Full Text] [Related]
4. Conservation of fruit dehiscence pathways between Lepidium campestre and Arabidopsis thaliana sheds light on the regulation of INDEHISCENT. Lenser T; Theißen G Plant J; 2013 Nov; 76(4):545-56. PubMed ID: 24004048 [TBL] [Abstract][Full Text] [Related]
5. Evolution of genes associated with gynoecium patterning and fruit development in Solanaceae. Ortiz-Ramírez CI; Plata-Arboleda S; Pabón-Mora N Ann Bot; 2018 May; 121(6):1211-1230. PubMed ID: 29471367 [TBL] [Abstract][Full Text] [Related]
6. SPATULA and ALCATRAZ, are partially redundant, functionally diverging bHLH genes required for Arabidopsis gynoecium and fruit development. Groszmann M; Paicu T; Alvarez JP; Swain SM; Smyth DR Plant J; 2011 Dec; 68(5):816-29. PubMed ID: 21801252 [TBL] [Abstract][Full Text] [Related]
8. Morphologically and physiologically diverse fruits of two Lepidium species differ in allocation of glucosinolates into immature and mature seed and pericarp. Mohammed S; Bhattacharya S; Gesing MA; Klupsch K; Theißen G; Mummenhoff K; Müller C PLoS One; 2020; 15(8):e0227528. PubMed ID: 32841235 [TBL] [Abstract][Full Text] [Related]
9. A novel role for the floral homeotic gene APETALA2 during Arabidopsis fruit development. Ripoll JJ; Roeder AH; Ditta GS; Yanofsky MF Development; 2011 Dec; 138(23):5167-76. PubMed ID: 22031547 [TBL] [Abstract][Full Text] [Related]
10. Evolution of fruit development genes in flowering plants. Pabón-Mora N; Wong GK; Ambrose BA Front Plant Sci; 2014; 5():300. PubMed ID: 25018763 [TBL] [Abstract][Full Text] [Related]
11. NAC transcription factors NST1 and NST3 regulate pod shattering in a partially redundant manner by promoting secondary wall formation after the establishment of tissue identity. Mitsuda N; Ohme-Takagi M Plant J; 2008 Dec; 56(5):768-78. PubMed ID: 18657234 [TBL] [Abstract][Full Text] [Related]
12. A genetic framework for fruit patterning in Arabidopsis thaliana. Dinneny JR; Weigel D; Yanofsky MF Development; 2005 Nov; 132(21):4687-96. PubMed ID: 16192305 [TBL] [Abstract][Full Text] [Related]
13. Evolution of the APETALA2 Gene Lineage in Seed Plants. Zumajo-Cardona C; Pabón-Mora N Mol Biol Evol; 2016 Jul; 33(7):1818-32. PubMed ID: 27030733 [TBL] [Abstract][Full Text] [Related]
14. Spatiotemporal seed development analysis provides insight into primary dormancy induction and evolution of the Lepidium delay of germination1 genes. Graeber K; Voegele A; Büttner-Mainik A; Sperber K; Mummenhoff K; Leubner-Metzger G Plant Physiol; 2013 Apr; 161(4):1903-17. PubMed ID: 23426197 [TBL] [Abstract][Full Text] [Related]
15. Understanding the basis of a novel fruit type in Brassicaceae: conservation and deviation in expression patterns of six genes. Avino M; Kramer EM; Donohue K; Hammel AJ; Hall JC Evodevo; 2012 Sep; 3(1):20. PubMed ID: 22943452 [TBL] [Abstract][Full Text] [Related]
16. Temperature Modulates Tissue-Specification Program to Control Fruit Dehiscence in Brassicaceae. Li XR; Deb J; Kumar SV; Østergaard L Mol Plant; 2018 Apr; 11(4):598-606. PubMed ID: 29449088 [TBL] [Abstract][Full Text] [Related]
17. The same regulatory point mutation changed seed-dispersal structures in evolution and domestication. Arnaud N; Lawrenson T; Østergaard L; Sablowski R Curr Biol; 2011 Jul; 21(14):1215-9. PubMed ID: 21737279 [TBL] [Abstract][Full Text] [Related]
18. Mutual regulation of Arabidopsis thaliana ethylene-responsive element binding protein and a plant floral homeotic gene, APETALA2. Ogawa T; Uchimiya H; Kawai-Yamada M Ann Bot; 2007 Feb; 99(2):239-44. PubMed ID: 17204538 [TBL] [Abstract][Full Text] [Related]
19. Common regulatory networks in leaf and fruit patterning revealed by mutations in the Arabidopsis ASYMMETRIC LEAVES1 gene. Alonso-Cantabrana H; Ripoll JJ; Ochando I; Vera A; Ferrándiz C; Martínez-Laborda A Development; 2007 Jul; 134(14):2663-71. PubMed ID: 17592013 [TBL] [Abstract][Full Text] [Related]
20. INDEHISCENT and SPATULA interact to specify carpel and valve margin tissue and thus promote seed dispersal in Arabidopsis. Girin T; Paicu T; Stephenson P; Fuentes S; Körner E; O'Brien M; Sorefan K; Wood TA; Balanzá V; Ferrándiz C; Smyth DR; Østergaard L Plant Cell; 2011 Oct; 23(10):3641-53. PubMed ID: 21990939 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]