These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 23173900)

  • 21. Assessment of the capability of cadmium accumulation and translocation among 31 willows: four patterns of willow biomass variation response to cadmium.
    Song X; Guo N; Yu R; Huang R; Zhang K; Chen Q; Tao J
    Environ Sci Pollut Res Int; 2023 Jul; 30(31):76735-76745. PubMed ID: 37247151
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Overexpression of vesicle-associated membrane protein PttVAP27-17 as a tool to improve biomass production and the overall saccharification yields in Populus trees.
    Gandla ML; Mähler N; Escamez S; Skotare T; Obudulu O; Möller L; Abreu IN; Bygdell J; Hertzberg M; Hvidsten TR; Moritz T; Wingsle G; Trygg J; Tuominen H; Jönsson LJ
    Biotechnol Biofuels; 2021 Feb; 14(1):43. PubMed ID: 33593413
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transgenic switchgrass (Panicum virgatum L.) targeted for reduced recalcitrance to bioconversion: a 2-year comparative analysis of field-grown lines modified for target gene or genetic element expression.
    Dumitrache A; Natzke J; Rodriguez M; Yee KL; Thompson OA; Poovaiah CR; Shen H; Mazarei M; Baxter HL; Fu C; Wang ZY; Biswal AK; Li G; Srivastava AC; Tang Y; Stewart CN; Dixon RA; Nelson RS; Mohnen D; Mielenz J; Brown SD; Davison BH
    Plant Biotechnol J; 2017 Jun; 15(6):688-697. PubMed ID: 27862852
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Field and saccharification performances of poplars severely downregulated in CAD1.
    De Meester B; Van Acker R; Wouters M; Traversari S; Steenackers M; Neukermans J; Van Breusegem F; Déjardin A; Pilate G; Boerjan W
    New Phytol; 2022 Dec; 236(6):2075-2090. PubMed ID: 35808905
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Physical-chemical properties of cell wall interface significantly correlated to the complex recalcitrance of corn straw.
    Wang Y; Xu X; Xue H; Zhang D; Li G
    Biotechnol Biofuels; 2021 Oct; 14(1):196. PubMed ID: 34598712
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A collection of genetically engineered Populus trees reveals wood biomass traits that predict glucose yield from enzymatic hydrolysis.
    Escamez S; Latha Gandla M; Derba-Maceluch M; Lundqvist SO; Mellerowicz EJ; Jönsson LJ; Tuominen H
    Sci Rep; 2017 Nov; 7(1):15798. PubMed ID: 29150693
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genetic improvement of willow for bioenergy and biofuels.
    Karp A; Hanley SJ; Trybush SO; Macalpine W; Pei M; Shield I
    J Integr Plant Biol; 2011 Feb; 53(2):151-65. PubMed ID: 21205181
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Poplar rotation coppice at a trace element-contaminated phytomanagement site: A 10-year study revealing biomass production, element export and impact on extractable elements.
    Chalot M; Girardclos O; Ciadamidaro L; Zappelini C; Yung L; Durand A; Pfendler S; Lamy I; Driget V; Blaudez D
    Sci Total Environ; 2020 Jan; 699():134260. PubMed ID: 31683219
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Field testing of transgenic aspen from large greenhouse screening identifies unexpected winners.
    Donev EN; Derba-Maceluch M; Yassin Z; Gandla ML; Pramod S; Heinonen E; Kumar V; Scheepers G; Vilaplana F; Johansson U; Hertzberg M; Sundberg B; Winestrand S; Hörnberg A; Alriksson B; Jönsson LJ; Mellerowicz EJ
    Plant Biotechnol J; 2023 May; 21(5):1005-1021. PubMed ID: 36668687
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Desirable plant cell wall traits for higher-quality miscanthus lignocellulosic biomass.
    da Costa RMF; Pattathil S; Avci U; Winters A; Hahn MG; Bosch M
    Biotechnol Biofuels; 2019; 12():85. PubMed ID: 31011368
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional screening of willow alleles in Arabidopsis combined with QTL mapping in willow (Salix) identifies SxMAX4 as a coppicing response gene.
    Salmon J; Ward SP; Hanley SJ; Leyser O; Karp A
    Plant Biotechnol J; 2014 May; 12(4):480-91. PubMed ID: 24393130
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tracking of enzymatic biomass deconstruction by fungal secretomes highlights markers of lignocellulose recalcitrance.
    Paës G; Navarro D; Benoit Y; Blanquet S; Chabbert B; Chaussepied B; Coutinho PM; Durand S; Grigoriev IV; Haon M; Heux L; Launay C; Margeot A; Nishiyama Y; Raouche S; Rosso MN; Bonnin E; Berrin JG
    Biotechnol Biofuels; 2019; 12():76. PubMed ID: 30976326
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reducing the effect of variable starch levels in biomass recalcitrance screening.
    Decker SR; Carlile M; Selig MJ; Doeppke C; Davis M; Sykes R; Turner G; Ziebell A
    Methods Mol Biol; 2012; 908():181-95. PubMed ID: 22843400
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of developmental stage and anatomical fraction contributions to cell wall recalcitrance in switchgrass.
    Crowe JD; Feringa N; Pattathil S; Merritt B; Foster C; Dines D; Ong RG; Hodge DB
    Biotechnol Biofuels; 2017; 10():184. PubMed ID: 28725264
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RNA interference suppression of lignin biosynthesis increases fermentable sugar yields for biofuel production from field-grown sugarcane.
    Jung JH; Vermerris W; Gallo M; Fedenko JR; Erickson JE; Altpeter F
    Plant Biotechnol J; 2013 Aug; 11(6):709-16. PubMed ID: 23551338
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multimodal analysis of pretreated biomass species highlights generic markers of lignocellulose recalcitrance.
    Herbaut M; Zoghlami A; Habrant A; Falourd X; Foucat L; Chabbert B; Paës G
    Biotechnol Biofuels; 2018; 11():52. PubMed ID: 29492107
    [TBL] [Abstract][Full Text] [Related]  

  • 37.
    Fan C; Feng S; Huang J; Wang Y; Wu L; Li X; Wang L; Tu Y; Xia T; Li J; Cai X; Peng L
    Biotechnol Biofuels; 2017; 10():221. PubMed ID: 28932262
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Agronomic performance of
    Macaya-Sanz D; Chen JG; Kalluri UC; Muchero W; Tschaplinski TJ; Gunter LE; Simon SJ; Biswal AK; Bryan AC; Payyavula R; Xie M; Yang Y; Zhang J; Mohnen D; Tuskan GA; DiFazio SP
    Biotechnol Biofuels; 2017; 10():253. PubMed ID: 29213313
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of a Modern Hybrid and an Ancient Sugarcane Implicates a Complex Interplay of Factors in Affecting Recalcitrance to Cellulosic Ethanol Production.
    Guzzo de Carli Poelking V; Giordano A; Ricci-Silva ME; Rhys Williams TC; Alves Peçanha D; Contin Ventrella M; Rencoret J; Ralph J; Pereira Barbosa MH; Loureiro M
    PLoS One; 2015; 10(8):e0134964. PubMed ID: 26252208
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Overcoming cellulose recalcitrance in woody biomass for the lignin-first biorefinery.
    Yang H; Zhang X; Luo H; Liu B; Shiga TM; Li X; Kim JI; Rubinelli P; Overton JC; Subramanyam V; Cooper BR; Mo H; Abu-Omar MM; Chapple C; Donohoe BS; Makowski L; Mosier NS; McCann MC; Carpita NC; Meilan R
    Biotechnol Biofuels; 2019; 12():171. PubMed ID: 31297159
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.