BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 23173912)

  • 1. A hierarchical coherent-gene-group model for brain development.
    Tsigelny IF; Kouznetsova VL; Baitaluk M; Changeux JP
    Genes Brain Behav; 2013 Mar; 12(2):147-65. PubMed ID: 23173912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. D-Serine exposure resulted in gene expression changes implicated in neurodegenerative disorders and neuronal dysfunction in male Fischer 344 rats.
    Davidson ME; Kerepesi LA; Soto A; Chan VT
    Arch Toxicol; 2009 Aug; 83(8):747-62. PubMed ID: 19212759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptome network component analysis with limited microarray data.
    Galbraith SJ; Tran LM; Liao JC
    Bioinformatics; 2006 Aug; 22(15):1886-94. PubMed ID: 16766556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying transcriptional regulatory networks by integrating sequence features and microarray data.
    Liu H
    Bioprocess Biosyst Eng; 2010 May; 33(4):495-505. PubMed ID: 19657679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene expression patterns reveal tissue-specific signaling networks controlling programmed cell death and ABA- regulated maturation in developing barley seeds.
    Sreenivasulu N; Radchuk V; Strickert M; Miersch O; Weschke W; Wobus U
    Plant J; 2006 Jul; 47(2):310-27. PubMed ID: 16771774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic cis-regulatory networks in the early Ciona intestinalis embryo.
    Kubo A; Suzuki N; Yuan X; Nakai K; Satoh N; Imai KS; Satou Y
    Development; 2010 May; 137(10):1613-23. PubMed ID: 20392745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of regulatory network topology reveals functionally distinct classes of microRNAs.
    Yu X; Lin J; Zack DJ; Mendell JT; Qian J
    Nucleic Acids Res; 2008 Nov; 36(20):6494-503. PubMed ID: 18927108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel high-throughput profiling of human transcription factors and its use for systematic pathway mapping.
    Qiao JY; Shao W; Wei HJ; Sun YM; Zhao YC; Xing WL; Zhang L; Mitchelson K; Cheng J
    J Proteome Res; 2008 Jul; 7(7):2769-79. PubMed ID: 18537283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of transcription factor expression during oogenesis and preimplantation development in mice.
    Kageyama S; Gunji W; Nakasato M; Murakami Y; Nagata M; Aoki F
    Zygote; 2007 May; 15(2):117-28. PubMed ID: 17462104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptional regulatory networks via gene ontology and expression data.
    Tuncay K; Ensman L; Sun J; Haidar AA; Stanley F; Trelinski M; Ortoleva P
    In Silico Biol; 2007; 7(1):21-34. PubMed ID: 17688426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a novel oligonucleotide array-based transcription factor assay platform for genome-wide active transcription factor profiling in Saccharomyces cerevisiae.
    Zhao Y; Shao W; Wei H; Qiao J; Lu Y; Sun Y; Mitchelson K; Cheng J; Zhou Y
    J Proteome Res; 2008 Mar; 7(3):1315-25. PubMed ID: 18220337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PageRank-based identification of signaling crosstalk from transcriptomics data: the case of Arabidopsis thaliana.
    Omranian N; Mueller-Roeber B; Nikoloski Z
    Mol Biosyst; 2012 Apr; 8(4):1121-7. PubMed ID: 22327945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microarray analysis of gene expression patterns during healing of rat corneas after excimer laser photorefractive keratectomy.
    Varela JC; Goldstein MH; Baker HV; Schultz GS
    Invest Ophthalmol Vis Sci; 2002 Jun; 43(6):1772-82. PubMed ID: 12036978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of an efficient method for the isolation of factors involved in gene transcription during rice embryo development.
    Ye R; Yao QH; Xu ZH; Xue HW
    Plant J; 2004 Apr; 38(2):348-57. PubMed ID: 15078336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selection of neural differentiation-specific genes by comparing profiles of random differentiation.
    Lee MS; Jun DH; Hwang CI; Park SS; Kang JJ; Park HS; Kim J; Kim JH; Seo JS; Park WY
    Stem Cells; 2006 Aug; 24(8):1946-55. PubMed ID: 16627687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ExPlain: finding upstream drug targets in disease gene regulatory networks.
    Kel A; Voss N; Valeev T; Stegmaier P; Kel-Margoulis O; Wingender E
    SAR QSAR Environ Res; 2008; 19(5-6):481-94. PubMed ID: 18853298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene expression profiles of mouse retinas during the second and third postnatal weeks.
    Liu J; Wang J; Huang Q; Higdon J; Magdaleno S; Curran T; Zuo J
    Brain Res; 2006 Jul; 1098(1):113-25. PubMed ID: 16777074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive analysis of transcription factor expression patterns in peripheral blood mononuclear cell of systemic lupus erythematosus.
    Sui W; Lin H; Chen J; Ou M; Dai Y
    Int J Rheum Dis; 2012 Apr; 15(2):212-9. PubMed ID: 22462426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression changes in mouse brains following nicotine-induced seizures: the modulation of transcription factor networks.
    Kedmi M; Orr-Urtreger A
    Physiol Genomics; 2007 Aug; 30(3):242-52. PubMed ID: 17456735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global and local architecture of the mammalian microRNA-transcription factor regulatory network.
    Shalgi R; Lieber D; Oren M; Pilpel Y
    PLoS Comput Biol; 2007 Jul; 3(7):e131. PubMed ID: 17630826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.