These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 23174332)

  • 1. Interconversion of CO2 and formic acid by bio-inspired Ir complexes with pendent bases.
    Fujita E; Muckerman JT; Himeda Y
    Biochim Biophys Acta; 2013; 1827(8-9):1031-8. PubMed ID: 23174332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formic acid dehydrogenation with bioinspired iridium complexes: a kinetic isotope effect study and mechanistic insight.
    Wang WH; Xu S; Manaka Y; Suna Y; Kambayashi H; Muckerman JT; Fujita E; Himeda Y
    ChemSusChem; 2014 Jul; 7(7):1976-83. PubMed ID: 24840600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iridium Complexes with Proton-Responsive Azole-Type Ligands as Effective Catalysts for CO
    Suna Y; Himeda Y; Fujita E; Muckerman JT; Ertem MZ
    ChemSusChem; 2017 Nov; 10(22):4535-4543. PubMed ID: 28985455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen storage and evolution catalysed by metal hydride complexes.
    Fukuzumi S; Suenobu T
    Dalton Trans; 2013 Jan; 42(1):18-28. PubMed ID: 23080061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cp*Co(III) catalysts with proton-responsive ligands for carbon dioxide hydrogenation in aqueous media.
    Badiei YM; Wang WH; Hull JF; Szalda DJ; Muckerman JT; Himeda Y; Fujita E
    Inorg Chem; 2013 Nov; 52(21):12576-86. PubMed ID: 24131038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient Hydrogen Storage and Production Using a Catalyst with an Imidazoline-Based, Proton-Responsive Ligand.
    Wang L; Onishi N; Murata K; Hirose T; Muckerman JT; Fujita E; Himeda Y
    ChemSusChem; 2017 Mar; 10(6):1071-1075. PubMed ID: 27860395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the Role of Inter- and Intramolecular Promoters in Electro- and Photochemical CO
    Fujita E; Grills DC; Manbeck GF; Polyansky DE
    Acc Chem Res; 2022 Mar; 55(5):616-628. PubMed ID: 35133133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Highly Efficient Heterogenized Iridium Complex for the Catalytic Hydrogenation of Carbon Dioxide to Formate.
    Park K; Gunasekar GH; Prakash N; Jung KD; Yoon S
    ChemSusChem; 2015 Oct; 8(20):3410-3. PubMed ID: 26493515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational Design of Iron Diphosphine Complexes with Pendant Amines for Hydrogenation of CO2 to Methanol: A Mimic of [NiFe] Hydrogenase.
    Chen X; Jing Y; Yang X
    Chemistry; 2016 Jun; 22(26):8897-902. PubMed ID: 27225505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen storage and delivery: the carbon dioxide - formic acid couple.
    Laurenczy G
    Chimia (Aarau); 2011; 65(9):663-6. PubMed ID: 22026175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A prolific catalyst for dehydrogenation of neat formic acid.
    Celaje JJ; Lu Z; Kedzie EA; Terrile NJ; Lo JN; Williams TJ
    Nat Commun; 2016 Apr; 7():11308. PubMed ID: 27076111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interconversion between formic acid and H(2)/CO(2) using rhodium and ruthenium catalysts for CO(2) fixation and H(2) storage.
    Himeda Y; Miyazawa S; Hirose T
    ChemSusChem; 2011 Apr; 4(4):487-93. PubMed ID: 21271682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal-Ligand Cooperation in Cp*Ir-Pyridylpyrrole Complexes: Rational Design and Catalytic Activity in Formic Acid Dehydrogenation and CO
    Mo XF; Liu C; Chen ZW; Ma F; He P; Yi XY
    Inorg Chem; 2021 Nov; 60(21):16584-16592. PubMed ID: 34637291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bio-inspired computational design of iron catalysts for the hydrogenation of carbon dioxide.
    Yang X
    Chem Commun (Camb); 2015 Aug; 51(66):13098-101. PubMed ID: 26186244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iridium and Ruthenium Complexes of
    Siek S; Burks DB; Gerlach DL; Liang G; Tesh JM; Thompson CR; Qu F; Shankwitz JE; Vasquez RM; Chambers N; Szulczewski GJ; Grotjahn DB; Webster CE; Papish ET
    Organometallics; 2017 Mar; 36(6):1091-1106. PubMed ID: 29540958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Versatile Rh- and Ir-Based Catalysts for CO
    Fidalgo J; Ruiz-Castañeda M; García-Herbosa G; Carbayo A; Jalón FA; Rodríguez AM; Manzano BR; Espino G
    Inorg Chem; 2018 Nov; 57(22):14186-14198. PubMed ID: 30395446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CO2 Hydrogenation Catalyzed by Iridium Complexes with a Proton-Responsive Ligand.
    Onishi N; Xu S; Manaka Y; Suna Y; Wang WH; Muckerman JT; Fujita E; Himeda Y
    Inorg Chem; 2015 Jun; 54(11):5114-23. PubMed ID: 25691331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bio-mimetic self-assembled computationally designed catalysts of Mo and W for hydrogenation of CO
    Shiekh BA; Kaur D; Kumar S
    Phys Chem Chem Phys; 2019 Oct; 21(38):21370-21380. PubMed ID: 31531468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of Proton-Responsive Catalysts.
    Wang L; Kanega R; Kawanami H; Himeda Y
    Chem Rec; 2017 Nov; 17(11):1071-1094. PubMed ID: 28650571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formic acid dehydrogenation catalysed by ruthenium complexes bearing the tripodal ligands triphos and NP3.
    Mellone I; Peruzzini M; Rosi L; Mellmann D; Junge H; Beller M; Gonsalvi L
    Dalton Trans; 2013 Feb; 42(7):2495-501. PubMed ID: 23212285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.