BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 23174485)

  • 1. Ultra-sensitive conductometric detection of heavy metals based on inhibition of alkaline phosphatase activity from Arthrospira platensis.
    Tekaya N; Saiapina O; Ben Ouada H; Lagarde F; Ben Ouada H; Jaffrezic-Renault N
    Bioelectrochemistry; 2013 Apr; 90():24-9. PubMed ID: 23174485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultra-sensitive conductometric detection of pesticides based on inhibition of esterase activity in Arthrospira platensis.
    Tekaya N; Saiapina O; Ben Ouada H; Lagarde F; Ben Ouada H; Jaffrezic-Renault N
    Environ Pollut; 2013 Jul; 178():182-8. PubMed ID: 23583674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Development of conductometric biosensor based on alkaline phosphatase for determining concentration of cadmium ions].
    Sosovs'ka OF; Berezhets'kyĭ AL
    Ukr Biokhim Zh (1999); 2007; 79(4):102-9. PubMed ID: 18219998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel conductometric biosensor based on three-enzyme system for selective determination of heavy metal ions.
    Soldatkin OO; Kucherenko IS; Pyeshkova VM; Kukla AL; Jaffrezic-Renault N; El'skaya AV; Dzyadevych SV; Soldatkin AP
    Bioelectrochemistry; 2012 Feb; 83():25-30. PubMed ID: 21903487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of novel conductometric biosensors based on immobilised whole cell Chlorella vulgaris microalgae.
    Chouteau C; Dzyadevych S; Chovelon JM; Durrieu C
    Biosens Bioelectron; 2004 Apr; 19(9):1089-96. PubMed ID: 15018964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of Chlorpyrifos by an alkaline phosphatase from the cyanobacterium Spirulina platensis.
    Thengodkar RR; Sivakami S
    Biodegradation; 2010 Jul; 21(4):637-44. PubMed ID: 20127145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A bi-enzymatic whole cell conductometric biosensor for heavy metal ions and pesticides detection in water samples.
    Chouteau C; Dzyadevych S; Durrieu C; Chovelon JM
    Biosens Bioelectron; 2005 Aug; 21(2):273-81. PubMed ID: 16023954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impedance spectroscopy and conductometric biosensing for probing catalase reaction with cyanide as ligand and inhibitor.
    Bouyahia N; Hamlaoui ML; Hnaien M; Lagarde F; Jaffrezic-Renault N
    Bioelectrochemistry; 2011 Feb; 80(2):155-61. PubMed ID: 20813591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding characteristics of copper and cadmium by cyanobacterium Spirulina platensis.
    Fang L; Zhou C; Cai P; Chen W; Rong X; Dai K; Liang W; Gu JD; Huang Q
    J Hazard Mater; 2011 Jun; 190(1-3):810-5. PubMed ID: 21514723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical algal biosensor using alkaline phosphatase for determination of heavy metals.
    Durrieu C; Tran-Minh C
    Ecotoxicol Environ Saf; 2002 Mar; 51(3):206-9. PubMed ID: 11971642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alkaline phosphatase inhibition based conductometric biosensor for phosphate estimation in biological fluids.
    Upadhyay LSB; Verma N
    Biosens Bioelectron; 2015 Jun; 68():611-616. PubMed ID: 25656777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alkaline phosphatase based amperometric biosensor immobilized by cysteamine-glutaraldehyde modified self-assembled monolayer.
    Yorganci E; Akyilmaz E
    Artif Cells Blood Substit Immobil Biotechnol; 2011 Oct; 39(5):317-23. PubMed ID: 21663400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of immobilized biophotonic beads consisting of Photobacterium leiognathi for the detection of heavy metals and pesticide.
    Ranjan R; Rastogi NK; Thakur MS
    J Hazard Mater; 2012 Jul; 225-226():114-23. PubMed ID: 22626628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of extracts from Spirulina platensis bioaccumulating cadmium and zinc on L929 cells.
    Pane L; Solisio C; Lodi A; Luigi Mariottini G; Converti A
    Ecotoxicol Environ Saf; 2008 May; 70(1):121-6. PubMed ID: 17662387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A sensitive whole-cell biosensor for the simultaneous detection of a broad-spectrum of toxic heavy metal ions.
    Cerminati S; Soncini FC; Checa SK
    Chem Commun (Camb); 2015 Apr; 51(27):5917-20. PubMed ID: 25730473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immobilization of Penaeus merguiensis alkaline phosphatase on gold nanorods for heavy metal detection.
    Homaei A
    Ecotoxicol Environ Saf; 2017 Feb; 136():1-7. PubMed ID: 27810575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High sensitive mesoporous TiO2-coated love wave device for heavy metal detection.
    Gammoudi I; Blanc L; Moroté F; Grauby-Heywang C; Boissière C; Kalfat R; Rebière D; Cohen-Bouhacina T; Dejous C
    Biosens Bioelectron; 2014 Jul; 57():162-70. PubMed ID: 24583687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-affinity binding of cadmium ions by mouse metallothionein prompting the design of a reversed-displacement protein-based fluorescence biosensor for cadmium detection.
    Varriale A; Staiano M; Rossi M; D'Auria S
    Anal Chem; 2007 Aug; 79(15):5760-2. PubMed ID: 17580954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Love-wave bacteria-based sensor for the detection of heavy metal toxicity in liquid medium.
    Gammoudi I; Tarbague H; Othmane A; Moynet D; Rebière D; Kalfat R; Dejous C
    Biosens Bioelectron; 2010 Dec; 26(4):1723-6. PubMed ID: 20810269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of cadmium by a fiber-optic biosensor based on localized surface plasmon resonance.
    Lin TJ; Chung MF
    Biosens Bioelectron; 2009 Jan; 24(5):1213-8. PubMed ID: 18718753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.