BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 23174536)

  • 1. MCM-48 modified magnetic mesoporous nanocomposite as an attractive adsorbent for the removal of sulfamethazine from water.
    Qiang Z; Bao X; Ben W
    Water Res; 2013 Aug; 47(12):4107-14. PubMed ID: 23174536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High efficient removal of mercury from aqueous solution by polyaniline/humic acid nanocomposite.
    Zhang Y; Li Q; Sun L; Tang R; Zhai J
    J Hazard Mater; 2010 Mar; 175(1-3):404-9. PubMed ID: 19896766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent.
    Gong JL; Wang B; Zeng GM; Yang CP; Niu CG; Niu QY; Zhou WJ; Liang Y
    J Hazard Mater; 2009 May; 164(2-3):1517-22. PubMed ID: 18977077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of carbon-coated magnetic nanocomposite (Fe3O4@C) and its application for sulfonamide antibiotics removal from water.
    Bao X; Qiang Z; Chang JH; Ben W; Qu J
    J Environ Sci (China); 2014 May; 26(5):962-9. PubMed ID: 25079626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing adsorption of crystal violet dye from water by magnetic nanocomposite using response surface modeling approach.
    Singh KP; Gupta S; Singh AK; Sinha S
    J Hazard Mater; 2011 Feb; 186(2-3):1462-73. PubMed ID: 21211903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption behavior of sulfamethazine in an activated sludge process treating swine wastewater.
    Ben W; Qiang Z; Yin X; Qu J; Pan X
    J Environ Sci (China); 2014 Aug; 26(8):1623-9. PubMed ID: 25108718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic binary oxide particles (MBOP): a promising adsorbent for removal of As (III) in water.
    Dhoble RM; Lunge S; Bhole AG; Rayalu S
    Water Res; 2011 Oct; 45(16):4769-81. PubMed ID: 21777934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of fluoride from aqueous solution by adsorption onto Kanuma mud.
    Chen N; Zhang Z; Feng C; Li M; Chen R; Sugiura N
    Water Sci Technol; 2010; 62(8):1888-97. PubMed ID: 20962405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sorptive removal of ionizable antibiotic sulfamethazine from aqueous solution by graphene oxide-coated biochar nanocomposites: Influencing factors and mechanism.
    Huang D; Wang X; Zhang C; Zeng G; Peng Z; Zhou J; Cheng M; Wang R; Hu Z; Qin X
    Chemosphere; 2017 Nov; 186():414-421. PubMed ID: 28802133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of para-nitrochlorobenzene from aqueous solution on surfactant-modified nanoscale zero-valent iron/graphene nanocomposites.
    Wu Y; Luo H; Wang H
    Environ Technol; 2014; 35(21-24):2698-707. PubMed ID: 25176304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of phenol from aqueous solutions by adsorption onto organomodified Tirebolu bentonite: equilibrium, kinetic and thermodynamic study.
    Senturk HB; Ozdes D; Gundogdu A; Duran C; Soylak M
    J Hazard Mater; 2009 Dec; 172(1):353-62. PubMed ID: 19656623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced removal of Cr(VI) from aqueous solution using polypyrrole/Fe3O4 magnetic nanocomposite.
    Bhaumik M; Maity A; Srinivasu VV; Onyango MS
    J Hazard Mater; 2011 Jun; 190(1-3):381-90. PubMed ID: 21497438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: equilibrium, thermodynamic, kinetics, mechanism and process design.
    Dawood S; Sen TK
    Water Res; 2012 Apr; 46(6):1933-46. PubMed ID: 22289676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of phenol and o-chlorophenol by mesoporous MCM-41.
    Mangrulkar PA; Kamble SP; Meshram J; Rayalu SS
    J Hazard Mater; 2008 Dec; 160(2-3):414-21. PubMed ID: 18524474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption of toxic metal ion Cr(VI) from aqueous state by TiO2-MCM-41: equilibrium and kinetic studies.
    Parida K; Mishra KG; Dash SK
    J Hazard Mater; 2012 Nov; 241-242():395-403. PubMed ID: 23092612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption of nitrobenzene from aqueous solution by MCM-41.
    Qin Q; Ma J; Liu K
    J Colloid Interface Sci; 2007 Nov; 315(1):80-6. PubMed ID: 17673227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of fluoride from aqueous solution by polypyrrole/Fe3O4 magnetic nanocomposite.
    Bhaumik M; Leswifi TY; Maity A; Srinivasu VV; Onyango MS
    J Hazard Mater; 2011 Feb; 186(1):150-9. PubMed ID: 21112695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of MCM-41 for dyes removal from wastewater.
    Lee CK; Liu SS; Juang LC; Wang CC; Lin KS; Lyu MD
    J Hazard Mater; 2007 Aug; 147(3):997-1005. PubMed ID: 17337117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-doped porous carbon with magnetic particles formed in situ for enhanced Cr(VI) removal.
    Li Y; Zhu S; Liu Q; Chen Z; Gu J; Zhu C; Lu T; Zhang D; Ma J
    Water Res; 2013 Aug; 47(12):4188-97. PubMed ID: 23561506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utilization of activated CO2-neutralized red mud for removal of arsenate from aqueous solutions.
    Sahu RC; Patel R; Ray BC
    J Hazard Mater; 2010 Jul; 179(1-3):1007-13. PubMed ID: 20456859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.