BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 23174667)

  • 1. Human pose recovery using wireless inertial measurement units.
    Lin JF; Kulić D
    Physiol Meas; 2012 Dec; 33(12):2099-115. PubMed ID: 23174667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Online tracking of the lower body joint angles using IMUs for gait rehabilitation.
    Joukov V; Karg M; Kulic D
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2310-3. PubMed ID: 25570450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rhythmic Extended Kalman Filter for Gait Rehabilitation Motion Estimation and Segmentation.
    Joukov V; Bonnet V; Karg M; Venture G; Kulic D
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):407-418. PubMed ID: 28141526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Instrumented triple single-leg hop test: A validated method for ambulatory measurement of ankle and knee angles using inertial sensors.
    Ahmadian N; Nazarahari M; Whittaker JL; Rouhani H
    Clin Biomech (Bristol, Avon); 2020 Dec; 80():105134. PubMed ID: 32768803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation of magneto-inertial measuring units for measuring hip joint angles.
    Horenstein RE; Lewis CL; Yan S; Halverstadt A; Shefelbine SJ
    J Biomech; 2019 Jun; 91():170-174. PubMed ID: 31147099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a body joint angle measurement system using IMU sensors.
    Bakhshi S; Mahoor MH; Davidson BS
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6923-6. PubMed ID: 22255930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human pose recovery for rehabilitation using ambulatory sensors.
    Lin JF; Kulić D
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4799-802. PubMed ID: 24110808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A basic study on variable-gain Kalman filter based on angle error calculated from acceleration signals for lower limb angle measurement with inertial sensors.
    Teruyama Y; Watanabe T
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3423-6. PubMed ID: 24110464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time estimate of body kinematics during a planar squat task using a single inertial measurement unit.
    Bonnet V; Mazzà C; Fraisse P; Cappozzo A
    IEEE Trans Biomed Eng; 2013 Jul; 60(7):1920-6. PubMed ID: 23392337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinematics based sensory fusion for wearable motion assessment in human walking.
    Slajpah S; Kamnik R; Munih M
    Comput Methods Programs Biomed; 2014 Sep; 116(2):131-44. PubMed ID: 24374292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A preliminary test of measurement of joint angles and stride length with wireless inertial sensors for wearable gait evaluation system.
    Watanabe T; Saito H; Koike E; Nitta K
    Comput Intell Neurosci; 2011; 2011():975193. PubMed ID: 21941531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of Novel Relative Orientation and Inertial Sensor-to-Segment Alignment Algorithms for Estimating 3D Hip Joint Angles.
    Adamowicz L; Gurchiek RD; Ferri J; Ursiny AT; Fiorentino N; McGinnis RS
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31771263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of the wireless ultra-miniaturized inertial measurement unit WB-4: preliminary performance evaluation.
    Lin Z; Zecca M; Sessa S; Bartolomeo L; Ishii H; Takanishi A
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6927-30. PubMed ID: 22255931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ambulatory measurement of three-dimensional foot displacement during treadmill walking using wearable wireless ultrasonic sensor network.
    Qi Y; Soh CB; Gunawan E; Low KS
    IEEE J Biomed Health Inform; 2015 Mar; 19(2):446-52. PubMed ID: 24759996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hand Motion Measurement using Inertial Sensor System and Accurate Improvement by Extended Kalman Filter.
    Kitano K; Ito A; Tsujiuchi N
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6405-6408. PubMed ID: 31947308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human activity monitoring system based on wearable sEMG and accelerometer wireless sensor nodes.
    Biagetti G; Crippa P; Falaschetti L; Orcioni S; Turchetti C
    Biomed Eng Online; 2018 Nov; 17(Suppl 1):132. PubMed ID: 30458783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human Joint Angle Estimation with Inertial Sensors and Validation with A Robot Arm.
    El-Gohary M; McNames J
    IEEE Trans Biomed Eng; 2015 Jul; 62(7):1759-67. PubMed ID: 25700438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Wearable Flow-MIMU Device for Monitoring Human Dynamic Motion.
    Liu SQ; Zhang JC; Li GZ; Zhu R
    IEEE Trans Neural Syst Rehabil Eng; 2020 Mar; 28(3):637-645. PubMed ID: 32031941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of wearable technology for performance assessment: a validation study.
    Papi E; Osei-Kuffour D; Chen YM; McGregor AH
    Med Eng Phys; 2015 Jul; 37(7):698-704. PubMed ID: 25937613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear optimization for drift removal in estimation of gait kinematics based on accelerometers.
    Djurić-Jovičić MD; Jovičić NS; Popović DB; Djordjević AR
    J Biomech; 2012 Nov; 45(16):2849-54. PubMed ID: 22985472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.