These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 23174667)

  • 21. A Wide-Range, Wireless Wearable Inertial Motion Sensing System for Capturing Fast Athletic Biomechanics in Overhead Pitching.
    Lapinski M; Brum Medeiros C; Moxley Scarborough D; Berkson E; Gill TJ; Kepple T; Paradiso JA
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31438549
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 25 years of lower limb joint kinematics by using inertial and magnetic sensors: A review of methodological approaches.
    Picerno P
    Gait Posture; 2017 Jan; 51():239-246. PubMed ID: 27833057
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ambulatory measurement of 3D knee joint angle.
    Favre J; Jolles BM; Aissaoui R; Aminian K
    J Biomech; 2008; 41(5):1029-35. PubMed ID: 18222459
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Accuracy Improvement on the Measurement of Human-Joint Angles.
    Meng D; Shoepe T; Vejarano G
    IEEE J Biomed Health Inform; 2016 Mar; 20(2):498-507. PubMed ID: 25622331
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The accuracy of measuring the kinematics of rising from a chair with accelerometers and gyroscopes.
    Boonstra MC; van der Slikke RM; Keijsers NL; van Lummel RC; de Waal Malefijt MC; Verdonschot N
    J Biomech; 2006; 39(2):354-8. PubMed ID: 16321638
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Estimation of the center of rotation using wearable magneto-inertial sensors.
    Crabolu M; Pani D; Raffo L; Cereatti A
    J Biomech; 2016 Dec; 49(16):3928-3933. PubMed ID: 27890536
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Repeatability of measuring knee flexion angles with wearable inertial sensors.
    Fennema MC; Bloomfield RA; Lanting BA; Birmingham TB; Teeter MG
    Knee; 2019 Jan; 26(1):97-105. PubMed ID: 30554906
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Validity of inertial sensor based 3D joint kinematics of static and dynamic sport and physiotherapy specific movements.
    Teufl W; Miezal M; Taetz B; Fröhlich M; Bleser G
    PLoS One; 2019; 14(2):e0213064. PubMed ID: 30817787
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Shoulder and elbow joint angle tracking with inertial sensors.
    El-Gohary M; McNames J
    IEEE Trans Biomed Eng; 2012 Sep; 59(9):2635-41. PubMed ID: 22911538
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inertial and time-of-arrival ranging sensor fusion.
    Vasilyev P; Pearson S; El-Gohary M; Aboy M; McNames J
    Gait Posture; 2017 May; 54():1-7. PubMed ID: 28242567
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A wearable wireless ultrasonic sensor network for human arm motion tracking.
    Qi Y; Soh CB; Gunawan E; Low KS
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5960-3. PubMed ID: 25571354
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Estimation of Full-Body Poses Using Only Five Inertial Sensors: An Eager or Lazy Learning Approach?
    Wouda FJ; Giuberti M; Bellusci G; Veltink PH
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27983676
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Novel Kalman Filter for Human Motion Tracking With an Inertial-Based Dynamic Inclinometer.
    Ligorio G; Sabatini AM
    IEEE Trans Biomed Eng; 2015 Aug; 62(8):2033-43. PubMed ID: 25775483
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gait posture estimation using wearable acceleration and gyro sensors.
    Takeda R; Tadano S; Natorigawa A; Todoh M; Yoshinari S
    J Biomech; 2009 Nov; 42(15):2486-94. PubMed ID: 19682694
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Nonlinear Dynamics-Based Estimator for Functional Electrical Stimulation: Preliminary Results From Lower-Leg Extension Experiments.
    Allen M; Zhong Q; Kirsch N; Dani A; Clark WW; Sharma N
    IEEE Trans Neural Syst Rehabil Eng; 2017 Dec; 25(12):2365-2374. PubMed ID: 28885155
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rider trunk and bicycle pose estimation with fusion of force/inertial sensors.
    Zhang Y; Chen K; Yi J
    IEEE Trans Biomed Eng; 2013 Sep; 60(9):2541-51. PubMed ID: 23629841
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Drift-Free 3D Orientation and Displacement Estimation for Quasi-Cyclical Movements Using One Inertial Measurement Unit: Application to Running.
    Zandbergen MA; Reenalda J; van Middelaar RP; Ferla RI; Buurke JH; Veltink PH
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161701
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Real-time activity classification in a wearable system prototype for knee health assessment via joint sounds.
    Toreyin H; Hyeon Ki Jeong ; Hersek S; Teague CN; Inan OT
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3113-3116. PubMed ID: 28268969
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New method to evaluate three-dimensional push-off angle during short-track speed skating using wearable inertial measurement unit sensors.
    Kim K; Kim JS; Purevsuren T; Khuyagbaatar B; Lee S; Kim YH
    Proc Inst Mech Eng H; 2019 Apr; 233(4):476-480. PubMed ID: 30773989
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A least-squares identification algorithm for estimating squat exercise mechanics using a single inertial measurement unit.
    Bonnet V; Mazzà C; Fraisse P; Cappozzo A
    J Biomech; 2012 May; 45(8):1472-7. PubMed ID: 22405496
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.