BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 23174673)

  • 1. A Salmonella Typhi homologue of bacteriophage muramidases controls typhoid toxin secretion.
    Hodak H; Galán JE
    EMBO Rep; 2013 Jan; 14(1):95-102. PubMed ID: 23174673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peptidoglycan editing by a specific LD-transpeptidase controls the muramidase-dependent secretion of typhoid toxin.
    Geiger T; Pazos M; Lara-Tejero M; Vollmer W; Galán JE
    Nat Microbiol; 2018 Nov; 3(11):1243-1254. PubMed ID: 30250245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of substrate recognition by a typhoid toxin secretion-associated muramidase.
    Geiger T; Lara-Tejero M; Xiong Y; Galán JE
    Elife; 2020 Jan; 9():. PubMed ID: 31958059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Typhoid toxin provides a window into typhoid fever and the biology of Salmonella Typhi.
    Galán JE
    Proc Natl Acad Sci U S A; 2016 Jun; 113(23):6338-44. PubMed ID: 27222578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decoding a Salmonella Typhi Regulatory Network that Controls Typhoid Toxin Expression within Human Cells.
    Fowler CC; Galán JE
    Cell Host Microbe; 2018 Jan; 23(1):65-76.e6. PubMed ID: 29324231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide Analysis of Salmonella enterica serovar Typhi in Humanized Mice Reveals Key Virulence Features.
    Karlinsey JE; Stepien TA; Mayho M; Singletary LA; Bingham-Ramos LK; Brehm MA; Greiner DL; Shultz LD; Gallagher LA; Bawn M; Kingsley RA; Libby SJ; Fang FC
    Cell Host Microbe; 2019 Sep; 26(3):426-434.e6. PubMed ID: 31447308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a transcriptional regulator that controls intracellular gene expression in Salmonella Typhi.
    Haghjoo E; Galán JE
    Mol Microbiol; 2007 Jun; 64(6):1549-61. PubMed ID: 17555437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of host adaptation in the Salmonella typhoid toxin.
    Gao X; Deng L; Stack G; Yu H; Chen X; Naito-Matsui Y; Varki A; Galán JE
    Nat Microbiol; 2017 Dec; 2(12):1592-1599. PubMed ID: 28993610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alternate typhoid toxin assembly evolved independently in the two
    Chemello AJ; Fowler CC
    mBio; 2024 Apr; 15(4):e0340323. PubMed ID: 38501873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Salmonella Typhoid Toxin PltB Subunit and Its Non-typhoidal Salmonella Ortholog Confer Differential Host Adaptation and Virulence.
    Lee S; Yang YA; Milano SK; Nguyen T; Ahn C; Sim JH; Thompson AJ; Hillpot EC; Yoo G; Paulson JC; Song J
    Cell Host Microbe; 2020 Jun; 27(6):937-949.e6. PubMed ID: 32396840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Delivery of a Salmonella Typhi exotoxin from a host intracellular compartment.
    Spanò S; Ugalde JE; Galán JE
    Cell Host Microbe; 2008 Jan; 3(1):30-8. PubMed ID: 18191792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Role of Typhoid Toxin in
    Chong A; Lee S; Yang YA; Song J
    Yale J Biol Med; 2017 Jun; 90(2):283-290. PubMed ID: 28656014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unique features in the intracellular transport of typhoid toxin revealed by a genome-wide screen.
    Chang SJ; Jin SC; Jiao X; Galán JE
    PLoS Pathog; 2019 Apr; 15(4):e1007704. PubMed ID: 30951565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of 9-O-acetylated glycan receptor moieties in the typhoid toxin binding and intoxication.
    Nguyen T; Lee S; Yang YA; Ahn C; Sim JH; Kei TG; Barnard KN; Yu H; Millano SK; Chen X; Parrish CR; Song J
    PLoS Pathog; 2020 Feb; 16(2):e1008336. PubMed ID: 32084237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emerging insights into the biology of typhoid toxin.
    Fowler CC; Chang SJ; Gao X; Geiger T; Stack G; Galán JE
    Curr Opin Microbiol; 2017 Feb; 35():70-77. PubMed ID: 28213043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic analysis of Indian strains of Salmonella enterica subsp. enterica serovar Typhi indicates novel genetic repertoire for pathogenicity and adaptations.
    Sekhon PK; Chander AM; Mayilraj S; Rishi P
    Mol Biol Rep; 2019 Aug; 46(4):3967-3989. PubMed ID: 31089918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Insights into the Assembly and Functional Diversification of Typhoid Toxin.
    Liu X; Chen Z; Jiao X; Jiang X; Qiu J; You F; Long H; Cao H; Fowler CC; Gao X
    mBio; 2022 Feb; 13(1):e0191621. PubMed ID: 35012347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Host adaptation of a bacterial toxin from the human pathogen Salmonella Typhi.
    Deng L; Song J; Gao X; Wang J; Yu H; Chen X; Varki N; Naito-Matsui Y; Galán JE; Varki A
    Cell; 2014 Dec; 159(6):1290-9. PubMed ID: 25480294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Receptor-Mediated Sorting of Typhoid Toxin during Its Export from Salmonella Typhi-Infected Cells.
    Chang SJ; Song J; Galán JE
    Cell Host Microbe; 2016 Nov; 20(5):682-689. PubMed ID: 27832592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyperexpression of type III secretion system of Salmonella Typhi linked to a higher cytotoxic effect to monocyte-derived macrophages by activating inflammasome.
    Lin HH; Chen HL; Janapatla RP; Chen CL; Chiu CH
    Microb Pathog; 2020 Sep; 146():104222. PubMed ID: 32387390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.