These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 23174765)

  • 1. How to pattern a leaf.
    Bolduc N; O'Connor D; Moon J; Lewis M; Hake S
    Cold Spring Harb Symp Quant Biol; 2012; 77():47-51. PubMed ID: 23174765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distal expression of knotted1 in maize leaves leads to reestablishment of proximal/distal patterning and leaf dissection.
    Ramirez J; Bolduc N; Lisch D; Hake S
    Plant Physiol; 2009 Dec; 151(4):1878-88. PubMed ID: 19854860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The establishment of axial patterning in the maize leaf.
    Foster T; Hay A; Johnston R; Hake S
    Development; 2004 Aug; 131(16):3921-9. PubMed ID: 15253937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Liguleless narrow mutation affects proximal-distal signaling and leaf growth.
    Moon J; Candela H; Hake S
    Development; 2013 Jan; 140(2):405-12. PubMed ID: 23250214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural variation at sympathy for the ligule controls penetrance of the semidominant Liguleless narrow-R mutation in Zea mays.
    Buescher EM; Moon J; Runkel A; Hake S; Dilkes BP
    G3 (Bethesda); 2014 Oct; 4(12):2297-306. PubMed ID: 25344411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mosaic analysis of extended auricle1 (eta1) suggests that a two-way signaling pathway is involved in positioning the blade/sheath boundary in Zea mays.
    Osmont KS; Sadeghian N; Freeling M
    Dev Biol; 2006 Jul; 295(1):1-12. PubMed ID: 16684518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The maize gene liguleless2 encodes a basic leucine zipper protein involved in the establishment of the leaf blade-sheath boundary.
    Walsh J; Waters CA; Freeling M
    Genes Dev; 1998 Jan; 12(2):208-18. PubMed ID: 9490265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of CDC2Zm and KNOTTED1 during in-vitro axillary shoot meristem proliferation and adventitious shoot meristem formation in maize (Zea mays L.) and barley (Hordeum vulgare L.).
    Zhang S; Williams-Carrier R; Jackson D; Lemaux PG
    Planta; 1998 Apr; 204(4):542-9. PubMed ID: 9684373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Network analyses identify a transcriptomic proximodistal prepattern in the maize leaf primordium.
    Leiboff S; Strable J; Johnston R; Federici S; Sylvester AW; Scanlon MJ
    New Phytol; 2021 Apr; 230(1):218-227. PubMed ID: 33280125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The dominant mutant Wavy auricle in blade1 disrupts patterning in a lateral domain of the maize leaf.
    Hay A; Hake S
    Plant Physiol; 2004 May; 135(1):300-8. PubMed ID: 15141070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic analysis of mutations that alter cell fates in maize leaves: dominant Liguleless mutations.
    Fowler JE; Freeling M
    Dev Genet; 1996; 18(3):198-222. PubMed ID: 8631155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mosaic analysis of the dominant mutant, Gnarley1-R, reveals distinct lateral and transverse signaling pathways during maize leaf development.
    Foster T; Veit B; Hake S
    Development; 1999 Jan; 126(2):305-13. PubMed ID: 9847244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unraveling the KNOTTED1 regulatory network in maize meristems.
    Bolduc N; Yilmaz A; Mejia-Guerra MK; Morohashi K; O'Connor D; Grotewold E; Hake S
    Genes Dev; 2012 Aug; 26(15):1685-90. PubMed ID: 22855831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptomic analyses indicate that maize ligule development recapitulates gene expression patterns that occur during lateral organ initiation.
    Johnston R; Wang M; Sun Q; Sylvester AW; Hake S; Scanlon MJ
    Plant Cell; 2014 Dec; 26(12):4718-32. PubMed ID: 25516601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Maize
    Muszynski MG; Moss-Taylor L; Chudalayandi S; Cahill J; Del Valle-Echevarria AR; Alvarez-Castro I; Petefish A; Sakakibara H; Krivosheev DM; Lomin SN; Romanov GA; Thamotharan S; Dam T; Li B; Brugière N
    Plant Cell; 2020 May; 32(5):1501-1518. PubMed ID: 32205456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vein patterning in growing leaves: axes and polarities.
    Rolland-Lagan AG
    Curr Opin Genet Dev; 2008 Aug; 18(4):348-53. PubMed ID: 18606536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The maize transcription factor KNOTTED1 directly regulates the gibberellin catabolism gene ga2ox1.
    Bolduc N; Hake S
    Plant Cell; 2009 Jun; 21(6):1647-58. PubMed ID: 19567707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sectors expressing the homeobox gene liguleless3 implicate a time-dependent mechanism for cell fate acquisition along the proximal-distal axis of the maize leaf.
    Muehlbauer GJ; Fowler JE; Freeling M
    Development; 1997 Dec; 124(24):5097-106. PubMed ID: 9362467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of liguleless1 and liguleless2 function during ligule induction in maize.
    Harper L; Freeling M
    Genetics; 1996 Dec; 144(4):1871-82. PubMed ID: 8978070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Auxin polar transport flanking incipient primordium initiates leaf adaxial-abaxial polarity patterning.
    Dong J; Huang H
    J Integr Plant Biol; 2018 Jun; 60(6):455-464. PubMed ID: 29405646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.