BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 2317510)

  • 1. The effects of anions on the kinetics of reductive elimination of iron from monoferrictransferrins by thiols.
    Baldwin DA; Egan TJ; Marques HM
    Biochim Biophys Acta; 1990 Mar; 1038(1):1-9. PubMed ID: 2317510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anion binding properties of the transferrins. Implications for function.
    Harris WR
    Biochim Biophys Acta; 2012 Mar; 1820(3):348-61. PubMed ID: 21846492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The reactivity of thiol compounds with different redox states of leghaemoglobin: evidence for competing reduction and addition pathways.
    Puppo A; Davies MJ
    Biochim Biophys Acta; 1995 Jan; 1246(1):74-81. PubMed ID: 7811734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic studies on the removal of iron and aluminum from recombinant and site-directed mutant N-lobe half transferrins.
    Li Y; Harris WR; Maxwell A; MacGillivray RT; Brown T
    Biochemistry; 1998 Oct; 37(40):14157-66. PubMed ID: 9760252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Allosteric effects of sulfonate anions on the rates of iron release from serum transferrin.
    Sharma R; Harris WR
    J Inorg Biochem; 2011 Sep; 105(9):1148-55. PubMed ID: 21708099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reductive mobilisation of ferritin iron.
    Funk F; Lenders JP; Crichton RR; Schneider W
    Eur J Biochem; 1985 Oct; 152(1):167-72. PubMed ID: 4043077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The formation of Fe3+-transferrin-CO3(2-) via the binding and oxidation of Fe2+.
    Kojima N; Bates GW
    J Biol Chem; 1981 Dec; 256(23):12034-9. PubMed ID: 7298642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron removal from monoferric human serum transferrins by 1, 2-dimethyl-3-hydroxypyridin-4-one, 1-hydroxypyridin-2-one and acetohydroxamic acid.
    Li Y; Harris WR
    Biochim Biophys Acta; 1998 Sep; 1387(1-2):89-102. PubMed ID: 9748517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uptake and release of iron from human transferrin.
    Huebers H; Josephson B; Huebers E; Csiba E; Finch C
    Proc Natl Acad Sci U S A; 1981 Apr; 78(4):2572-6. PubMed ID: 6941310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of nitric oxide and other iron-containing metabolites during the reductive metabolism of nitroprusside by microsomes and by thiols.
    Rao DN; Cederbaum AI
    Arch Biochem Biophys; 1995 Aug; 321(2):363-71. PubMed ID: 7646061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of augmentation of the antibody response in vitro by 2-mercaptoethanol in murine lymphocytes. II. A major role of the mixed disulfide between 2-mercaptoethanol and cysteine.
    Ohmori H; Yamamoto I
    Cell Immunol; 1983 Jul; 79(1):173-85. PubMed ID: 6861210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of inorganic anions on the formation and stability of Fe3+-transferrin-anion complexes.
    Foley AA; Bates GW
    Biochim Biophys Acta; 1988 May; 965(2-3):154-62. PubMed ID: 2835112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of synergistic and non-synergistic anions on the iron binding site from serum transferrin: A molecular dynamic simulation analysis.
    Ghanbari Z; Housaindokht MR; Bozorgmehr MR; Izadyar M
    J Mol Graph Model; 2017 Nov; 78():176-186. PubMed ID: 29073555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics and mechanism of the reaction between 3-deoxyhexosulose and thiols.
    Edwards AS; Wedzicha BL
    Food Addit Contam; 1992; 9(5):461-9. PubMed ID: 1298650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane transport of non-transferrin-bound iron by reticulocytes.
    Morgan EH
    Biochim Biophys Acta; 1988 Sep; 943(3):428-39. PubMed ID: 3415985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Release of iron from transferrin by phosphonocarboxylate and diphosphonate chelating agents.
    Harris WR; Brook CE; Spilling CD; Elleppan S; Peng W; Xin M; Wyk JV
    J Inorg Biochem; 2004 Nov; 98(11):1824-36. PubMed ID: 15522410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large cooperativity in the removal of iron from transferrin at physiological temperature and chloride ion concentration.
    Hamilton DH; Turcot I; Stintzi A; Raymond KN
    J Biol Inorg Chem; 2004 Dec; 9(8):936-44. PubMed ID: 15517438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radical reactions in aqueous disulphide-thiol systems.
    Bonifacić M; Asmus KD
    Int J Radiat Biol Relat Stud Phys Chem Med; 1984 Jul; 46(1):35-45. PubMed ID: 6430835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of iron release from ferric binding protein (FbpA): mechanistic implications in bacterial periplasm-to-cytosol Fe3+ transport.
    Dhungana S; Anderson DS; Mietzner TA; Crumbliss AL
    Biochemistry; 2005 Jul; 44(28):9606-18. PubMed ID: 16008346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of ligand structure on the pathways for iron release from human serum transferrin.
    Brook CE; Harris WR; Spilling CD; Peng W; Harburn JJ; Srisung S
    Inorg Chem; 2005 Jul; 44(14):5183-91. PubMed ID: 15998048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.