BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 23175152)

  • 1. The mechanism of long-term low-dose asymmetric dimethylarginine inducing transforming growth factor-β expression in endothelial cells.
    Feng Y; Zhang D; Zhang Y; Zhang Q; Liu W
    Int J Mol Med; 2013 Jan; 31(1):67-74. PubMed ID: 23175152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Actin cytoskeleton-dependent pathways for ADMA-induced NF-κB activation and TGF-β high expression in human renal glomerular endothelial cells.
    Wang L; Zhang D; Zheng J; Feng Y; Zhang Y; Liu W
    Acta Biochim Biophys Sin (Shanghai); 2012 Nov; 44(11):918-23. PubMed ID: 23027376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asymmetric dimethylarginine impairs fibrinolytic activity in human umbilical vein endothelial cells via p38 MAPK and NF-κB pathways.
    Zhang Q; Chen N; Qiu W; Xu X; Wang D; Tsao PS; Jin H
    Thromb Res; 2011 Jul; 128(1):42-6. PubMed ID: 21429569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effect of asymmetric dimethylarginine on the activation of hepatic stellate cells and its mechanism].
    Li JC; Chang L; Lu D; Jiang DJ; Tan DM
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2007 Jun; 32(3):427-32. PubMed ID: 17611319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Apelin-13 passes through the ADMA-damaged endothelial barrier and acts on vascular smooth muscle cells.
    Wang LY; Zhang DL; Zheng JF; Zhang Y; Zhang QD; Liu WH
    Peptides; 2011 Dec; 32(12):2436-43. PubMed ID: 22001227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The inhibitory effect of simvastatin on the ADMA-induced inflammatory reaction is mediated by MAPK pathways in endothelial cells.
    Jiang JL; Wang S; Li NS; Zhang XH; Deng HW; Li YJ
    Biochem Cell Biol; 2007 Feb; 85(1):66-77. PubMed ID: 17464346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asymmetric dimethylarginine induces apoptosis via p38 MAPK/caspase-3-dependent signaling pathway in endothelial cells.
    Jiang DJ; Jia SJ; Dai Z; Li YJ
    J Mol Cell Cardiol; 2006 Apr; 40(4):529-39. PubMed ID: 16516911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Actin cytoskeleton modulates ADMA-induced NF-kappaB nuclear translocation and ICAM-1 expression in endothelial cells.
    Wei-Kang G; Dong-Liang Z; Xin-Xin W; Wei K; Zhang Y; Qi-Dong Z; Wen-Hu L
    Med Sci Monit; 2011 Sep; 17(9):BR242-7. PubMed ID: 21873936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roxithromycin inhibits transforming growth factor-beta production by cultured human mesangial cells.
    Yamabe H; Shimada M; Kaizuka M; Nakamura M; Kumasaka R; Murakami R; Fujita T; Nakamura N; Osawa H; Okumura K
    Nephrology (Carlton); 2006 Dec; 11(6):524-30. PubMed ID: 17199791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymmetric dimethylarginine damages connexin43-mediated endothelial gap junction intercellular communication.
    Jia SJ; Zhou Z; Zhang BK; Hu ZW; Deng HW; Li YJ
    Biochem Cell Biol; 2009 Dec; 87(6):867-74. PubMed ID: 19935872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Indoxyl sulfate induces endothelial cell senescence by increasing reactive oxygen species production and p53 activity.
    Adelibieke Y; Shimizu H; Muteliefu G; Bolati D; Niwa T
    J Ren Nutr; 2012 Jan; 22(1):86-9. PubMed ID: 22200421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphatidylinositol 3-kinase/Akt pathway is involved in transforming growth factor-beta1-induced phenotypic modulation of 10T1/2 cells to smooth muscle cells.
    Lien SC; Usami S; Chien S; Chiu JJ
    Cell Signal; 2006 Aug; 18(8):1270-8. PubMed ID: 16310342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vinorelbine-induced oxidative injury in human endothelial cells mediated by AMPK/PKC/NADPH/NF-κB pathways.
    Tsai KL; Chiu TH; Tsai MH; Chen HY; Ou HC
    Cell Biochem Biophys; 2012 Apr; 62(3):467-79. PubMed ID: 22194154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GEF-H1/RhoA signalling pathway mediates lipopolysaccharide-induced intercellular adhesion molecular-1 expression in endothelial cells via activation of p38 and NF-κB.
    Guo F; Zhou Z; Dou Y; Tang J; Gao C; Huan J
    Cytokine; 2012 Mar; 57(3):417-28. PubMed ID: 22226621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of P38MAPK in human corneal endothelial cell migration induced by TGF-β(2).
    Joko T; Shiraishi A; Akune Y; Tokumaru S; Kobayashi T; Miyata K; Ohashi Y
    Exp Eye Res; 2013 Mar; 108():23-32. PubMed ID: 23257207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arginine attenuates methylglyoxal- and high glucose-induced endothelial dysfunction and oxidative stress by an endothelial nitric-oxide synthase-independent mechanism.
    Dhar I; Dhar A; Wu L; Desai K
    J Pharmacol Exp Ther; 2012 Jul; 342(1):196-204. PubMed ID: 22518022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation by DDAH/ADMA pathway of lipopolysaccharide-induced tissue factor expression in endothelial cells.
    Xin HY; Jiang DJ; Jia SJ; Song K; Wang GP; Li YJ; Chen FP
    Thromb Haemost; 2007 May; 97(5):830-8. PubMed ID: 17479195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disruption of asymmetric dimethylarginine-induced RelA/P65 association with actin in endothelial cells.
    Guo W; Zhang D; Wang L; Zhang Y; Liu W
    Acta Biochim Biophys Sin (Shanghai); 2013 Mar; 45(3):229-35. PubMed ID: 23296075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetric dimethylarginine (ADMA) induces chronic kidney disease through a mechanism involving collagen and TGF-β1 synthesis.
    Mihout F; Shweke N; Bigé N; Jouanneau C; Dussaule JC; Ronco P; Chatziantoniou C; Boffa JJ
    J Pathol; 2011 Jan; 223(1):37-45. PubMed ID: 20845411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aspirin prevents resistin-induced endothelial dysfunction by modulating AMPK, ROS, and Akt/eNOS signaling.
    Ou HC; Lee WJ; Wu CM; Chen JF; Sheu WH
    J Vasc Surg; 2012 Apr; 55(4):1104-15. PubMed ID: 22244860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.