These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 23175591)
1. Evolution of genome size in Carex (Cyperaceae) in relation to chromosome number and genomic base composition. Lipnerová I; Bures P; Horová L; Smarda P Ann Bot; 2013 Jan; 111(1):79-94. PubMed ID: 23175591 [TBL] [Abstract][Full Text] [Related]
2. Genome size stability despite high chromosome number variation in Carex gr. laevigata. Escudero M; Maguilla E; Loureiro J; Castro M; Castro S; Luceño M Am J Bot; 2015 Feb; 102(2):233-8. PubMed ID: 25667076 [TBL] [Abstract][Full Text] [Related]
3. Dynamics of chromosome number and genome size variation in a cytogenetically variable sedge (Carex scoparia var. scoparia, Cyperaceae). Chung KS; Weber JA; Hipp AL Am J Bot; 2011 Jan; 98(1):122-9. PubMed ID: 21613090 [TBL] [Abstract][Full Text] [Related]
4. Chromosome number evolves independently of genome size in a clade with nonlocalized centromeres (Carex: Cyperaceae). Chung KS; Hipp AL; Roalson EH Evolution; 2012 Sep; 66(9):2708-22. PubMed ID: 22946798 [TBL] [Abstract][Full Text] [Related]
5. Are holocentrics doomed to change? Limited chromosome number variation in Rhynchospora Vahl (Cyperaceae). Ribeiro T; Buddenhagen CE; Thomas WW; Souza G; Pedrosa-Harand A Protoplasma; 2018 Jan; 255(1):263-272. PubMed ID: 28844108 [TBL] [Abstract][Full Text] [Related]
6. Phylogeny and chromosomal variations in East Asian Carex, Siderostictae group (Cyperaceae), based on DNA sequences and cytological data. Yano O; Ikeda H; Jin XF; Hoshino T J Plant Res; 2014; 127(1):99-107. PubMed ID: 23857080 [TBL] [Abstract][Full Text] [Related]
7. Evolution of genome size and genomic GC content in carnivorous holokinetics (Droseraceae). Veleba A; Šmarda P; Zedek F; Horová L; Šmerda J; Bureš P Ann Bot; 2017 Feb; 119(3):409-416. PubMed ID: 28025291 [TBL] [Abstract][Full Text] [Related]
8. Evolution of genome size and chromosome number in the carnivorous plant genus Genlisea (Lentibulariaceae), with a new estimate of the minimum genome size in angiosperms. Fleischmann A; Michael TP; Rivadavia F; Sousa A; Wang W; Temsch EM; Greilhuber J; Müller KF; Heubl G Ann Bot; 2014 Dec; 114(8):1651-63. PubMed ID: 25274549 [TBL] [Abstract][Full Text] [Related]
9. Nonuniform processes of chromosome evolution in sedges (Carex: Cyperaceae). Hipp AL Evolution; 2007 Sep; 61(9):2175-94. PubMed ID: 17767589 [TBL] [Abstract][Full Text] [Related]
10. Chromosome numbers of Carex (Cyperaceae) and their taxonomic implications. Więcław H; Kalinka A; Koopman J PLoS One; 2020; 15(2):e0228353. PubMed ID: 32040511 [TBL] [Abstract][Full Text] [Related]
11. Descending Dysploidy and Bidirectional Changes in Genome Size Accompanied Senderowicz M; Nowak T; Rojek-Jelonek M; Bisaga M; Papp L; Weiss-Schneeweiss H; Kolano B Genes (Basel); 2021 Sep; 12(9):. PubMed ID: 34573417 [TBL] [Abstract][Full Text] [Related]
12. Diversification rates and chromosome evolution in the most diverse angiosperm genus of the temperate zone (Carex, Cyperaceae). Escudero M; Hipp AL; Waterway MJ; Valente LM Mol Phylogenet Evol; 2012 Jun; 63(3):650-5. PubMed ID: 22366369 [TBL] [Abstract][Full Text] [Related]
13. Correlated evolution of LTR retrotransposons and genome size in the genus Eleocharis. Zedek F; Smerda J; Smarda P; Bureš P BMC Plant Biol; 2010 Nov; 10():265. PubMed ID: 21118487 [TBL] [Abstract][Full Text] [Related]
14. Complex patterns of ploidy in a holocentric plant clade (Schoenus, Cyperaceae) in the Cape biodiversity hotspot. Elliott TL; Muasya AM; Bureš P Ann Bot; 2023 Feb; 131(1):143-156. PubMed ID: 35226733 [TBL] [Abstract][Full Text] [Related]
15. Karyotype stability and predictors of chromosome number variation in sedges: a study in Carex section Spirostachyae (Cyperaceae). Escudero M; Hipp AL; Luceño M Mol Phylogenet Evol; 2010 Oct; 57(1):353-63. PubMed ID: 20655386 [TBL] [Abstract][Full Text] [Related]
16. A universe of dwarfs and giants: genome size and chromosome evolution in the monocot family Melanthiaceae. Pellicer J; Kelly LJ; Leitch IJ; Zomlefer WB; Fay MF New Phytol; 2014 Mar; 201(4):1484-1497. PubMed ID: 24299166 [TBL] [Abstract][Full Text] [Related]
17. Repeat proliferation and partial endoreplication jointly shape the patterns of genome size evolution in orchids. Chumová Z; Záveská E; Hloušková P; Ponert J; Schmidt PA; Čertner M; Mandáková T; Trávníček P Plant J; 2021 Jul; 107(2):511-524. PubMed ID: 33960537 [TBL] [Abstract][Full Text] [Related]
18. Karyotype diversity and genome size variation in Neotropical Maxillariinae orchids. Moraes AP; Koehler S; Cabral JS; Gomes SS; Viccini LF; Barros F; Felix LP; Guerra M; Forni-Martins ER Plant Biol (Stuttg); 2017 Mar; 19(2):298-308. PubMed ID: 27917576 [TBL] [Abstract][Full Text] [Related]
19. Species coherence in the face of karyotype diversification in holocentric organisms: the case of a cytogenetically variable sedge (Carex scoparia, Cyperaceae). Escudero M; Weber JA; Hipp AL Ann Bot; 2013 Aug; 112(3):515-26. PubMed ID: 23723260 [TBL] [Abstract][Full Text] [Related]
20. A deep dive into the ancestral chromosome number and genome size of flowering plants. Carta A; Bedini G; Peruzzi L New Phytol; 2020 Nov; 228(3):1097-1106. PubMed ID: 32421860 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]