These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 23175839)

  • 1. A competition-based mechanism mediates developmental refinement of tectal neuron receptive fields.
    Dong W; Aizenman CD
    J Neurosci; 2012 Nov; 32(47):16872-9. PubMed ID: 23175839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition to excitation ratio regulates visual system responses and behavior in vivo.
    Shen W; McKeown CR; Demas JA; Cline HT
    J Neurophysiol; 2011 Nov; 106(5):2285-302. PubMed ID: 21795628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional elimination of excitatory feedforward inputs underlies developmental refinement of visual receptive fields in zebrafish.
    Zhang M; Liu Y; Wang SZ; Zhong W; Liu BH; Tao HW
    J Neurosci; 2011 Apr; 31(14):5460-9. PubMed ID: 21471382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DSCAM differentially modulates pre- and postsynaptic structural and functional central connectivity during visual system wiring.
    Santos RA; Fuertes AJC; Short G; Donohue KC; Shao H; Quintanilla J; Malakzadeh P; Cohen-Cory S
    Neural Dev; 2018 Sep; 13(1):22. PubMed ID: 30219101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatiotemporal specificity of neuronal activity directs the modification of receptive fields in the developing retinotectal system.
    Vislay-Meltzer RL; Kampff AR; Engert F
    Neuron; 2006 Apr; 50(1):101-14. PubMed ID: 16600859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and spike timing-dependent plasticity of recurrent excitation in the Xenopus optic tectum.
    Pratt KG; Dong W; Aizenman CD
    Nat Neurosci; 2008 Apr; 11(4):467-75. PubMed ID: 18344990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced visual activity in vivo forms nascent synapses in the developing retinotectal projection.
    Aizenman CD; Cline HT
    J Neurophysiol; 2007 Apr; 97(4):2949-57. PubMed ID: 17267761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neurodevelopmental effects of chronic exposure to elevated levels of pro-inflammatory cytokines in a developing visual system.
    Lee RH; Mills EA; Schwartz N; Bell MR; Deeg KE; Ruthazer ES; Marsh-Armstrong N; Aizenman CD
    Neural Dev; 2010 Jan; 5():2. PubMed ID: 20067608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity-dependent matching of excitatory and inhibitory inputs during refinement of visual receptive fields.
    Tao HW; Poo MM
    Neuron; 2005 Mar; 45(6):829-36. PubMed ID: 15797545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell-autonomous TrkB signaling in presynaptic retinal ganglion cells mediates axon arbor growth and synapse maturation during the establishment of retinotectal synaptic connectivity.
    Marshak S; Nikolakopoulou AM; Dirks R; Martens GJ; Cohen-Cory S
    J Neurosci; 2007 Mar; 27(10):2444-56. PubMed ID: 17344382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrophysiological Recording for Study of
    Luo Y; Shen W; Cline HT
    Cold Spring Harb Protoc; 2021 Jun; 2021(6):. PubMed ID: 33785560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Moving visual stimuli rapidly induce direction sensitivity of developing tectal neurons.
    Engert F; Tao HW; Zhang LI; Poo MM
    Nature; 2002 Oct; 419(6906):470-5. PubMed ID: 12368854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Homeostatic regulation of intrinsic excitability and synaptic transmission in a developing visual circuit.
    Pratt KG; Aizenman CD
    J Neurosci; 2007 Aug; 27(31):8268-77. PubMed ID: 17670973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spike timing-dependent LTP/LTD mediates visual experience-dependent plasticity in a developing retinotectal system.
    Mu Y; Poo MM
    Neuron; 2006 Apr; 50(1):115-25. PubMed ID: 16600860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TORC1 selectively regulates synaptic maturation and input convergence in the developing visual system.
    Gobert D; Schohl A; Kutsarova E; Ruthazer ES
    Dev Neurobiol; 2020 Sep; 80(9-10):332-350. PubMed ID: 32996262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experience-Dependent Bimodal Plasticity of Inhibitory Neurons in Early Development.
    He HY; Shen W; Hiramoto M; Cline HT
    Neuron; 2016 Jun; 90(6):1203-1214. PubMed ID: 27238867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visual avoidance in Xenopus tadpoles is correlated with the maturation of visual responses in the optic tectum.
    Dong W; Lee RH; Xu H; Yang S; Pratt KG; Cao V; Song YK; Nurmikko A; Aizenman CD
    J Neurophysiol; 2009 Feb; 101(2):803-15. PubMed ID: 19073807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic response properties of visual neurons and context-dependent surround effects on receptive fields in the tectum of the salamander Plethodon shermani.
    Schuelert N; Dicke U
    Neuroscience; 2005; 134(2):617-32. PubMed ID: 15975725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GABAergic circuits control stimulus-instructed receptive field development in the optic tectum.
    Richards BA; Voss OP; Akerman CJ
    Nat Neurosci; 2010 Sep; 13(9):1098-106. PubMed ID: 20694002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovery of the ipsilateral oculotectal projection following nerve crush in the frog: evidence that retinal afferents make synapses at abnormal tectal locations.
    Adamson J; Burke J; Grobstein P
    J Neurosci; 1984 Oct; 4(10):2635-49. PubMed ID: 6092566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.