These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 23176171)

  • 1. Fast monolayer adsorption and slow energy transfer in CdSe quantum dot sensitized ZnO nanowires.
    Zheng K; Žídek K; Abdellah M; Torbjörnsson M; Chábera P; Shao S; Zhang F; Pullerits T
    J Phys Chem A; 2013 Jul; 117(29):5919-25. PubMed ID: 23176171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron transfer in quantum-dot-sensitized ZnO nanowires: ultrafast time-resolved absorption and terahertz study.
    Žídek K; Zheng K; Ponseca CS; Messing ME; Wallenberg LR; Chábera P; Abdellah M; Sundström V; Pullerits T
    J Am Chem Soc; 2012 Jul; 134(29):12110-7. PubMed ID: 22730926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CdSe-CdS quantum dots co-sensitized ZnO hierarchical hybrids for solar cells with enhanced photo-electrical conversion efficiency.
    Yuan Z; Yin L
    Nanoscale; 2014 Nov; 6(21):13135-44. PubMed ID: 25251160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced charge recombination in a co-sensitized quantum dot solar cell with two different sizes of CdSe quantum dot.
    Chen J; Lei W; Deng WQ
    Nanoscale; 2011 Feb; 3(2):674-7. PubMed ID: 21132215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CdSe quantum dot-fullerene hybrid nanocomposite for solar energy conversion: electron transfer and photoelectrochemistry.
    Bang JH; Kamat PV
    ACS Nano; 2011 Dec; 5(12):9421-7. PubMed ID: 22107780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films.
    Robel I; Subramanian V; Kuno M; Kamat PV
    J Am Chem Soc; 2006 Feb; 128(7):2385-93. PubMed ID: 16478194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hole transfer from single quantum dots.
    Song N; Zhu H; Jin S; Lian T
    ACS Nano; 2011 Nov; 5(11):8750-9. PubMed ID: 21962001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photocharging Artifacts in Measurements of Electron Transfer in Quantum-Dot-Sensitized Mesoporous Titania Films.
    Makarov NS; McDaniel H; Fuke N; Robel I; Klimov VI
    J Phys Chem Lett; 2014 Jan; 5(1):111-8. PubMed ID: 26276189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ZnO/TiO2 nanocable structured photoelectrodes for CdS/CdSe quantum dot co-sensitized solar cells.
    Tian J; Zhang Q; Zhang L; Gao R; Shen L; Zhang S; Qu X; Cao G
    Nanoscale; 2013 Feb; 5(3):936-43. PubMed ID: 23166058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron Trap to Electron Storage Center in Specially Aligned Mn-Doped CdSe d-Dot: A Step Forward in the Design of Higher Efficient Quantum-Dot Solar Cell.
    Debnath T; Maity P; Maiti S; Ghosh HN
    J Phys Chem Lett; 2014 Aug; 5(16):2836-42. PubMed ID: 26278087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photodriven charge separation dynamics in CdSe/ZnS core/shell quantum dot/cobaloxime hybrid for efficient hydrogen production.
    Huang J; Mulfort KL; Du P; Chen LX
    J Am Chem Soc; 2012 Oct; 134(40):16472-5. PubMed ID: 22989083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fortification of CdSe quantum dots with graphene oxide. Excited state interactions and light energy conversion.
    Lightcap IV; Kamat PV
    J Am Chem Soc; 2012 Apr; 134(16):7109-16. PubMed ID: 22458366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple exciton dissociation in CdSe quantum dots by ultrafast electron transfer to adsorbed methylene blue.
    Huang J; Huang Z; Yang Y; Zhu H; Lian T
    J Am Chem Soc; 2010 Apr; 132(13):4858-64. PubMed ID: 20218563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Core/shell colloidal quantum dot exciplex states for the development of highly efficient quantum-dot-sensitized solar cells.
    Wang J; Mora-Seró I; Pan Z; Zhao K; Zhang H; Feng Y; Yang G; Zhong X; Bisquert J
    J Am Chem Soc; 2013 Oct; 135(42):15913-22. PubMed ID: 24070636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer.
    Kamat PV
    Acc Chem Res; 2012 Nov; 45(11):1906-15. PubMed ID: 22493938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ethyl Cellulose and Cetrimonium Bromide Assisted Synthesis of Mesoporous, Hexagon Shaped ZnO Nanodisks with Exposed ±{0001} Polar Facets for Enhanced Photovoltaic Performance in Quantum Dot Sensitized Solar Cells.
    Chetia TR; Ansari MS; Qureshi M
    ACS Appl Mater Interfaces; 2015 Jun; 7(24):13266-79. PubMed ID: 25966867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wave function engineering for ultrafast charge separation and slow charge recombination in type II core/shell quantum dots.
    Zhu H; Song N; Lian T
    J Am Chem Soc; 2011 Jun; 133(22):8762-71. PubMed ID: 21534569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced charge transfer kinetics of CdSe quantum dot-sensitized solar cell by inorganic ligand exchange treatments.
    Yun HJ; Paik T; Edley ME; Baxter JB; Murray CB
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3721-8. PubMed ID: 24447012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Charging of quantum dots by sulfide redox electrolytes reduces electron injection efficiency in quantum dot sensitized solar cells.
    Zhu H; Song N; Lian T
    J Am Chem Soc; 2013 Aug; 135(31):11461-4. PubMed ID: 23865741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical control over photoinduced electron transfer and trapping in CdSe-CdTe quantum-dot solids.
    Boehme SC; Walvis TA; Infante I; Grozema FC; Vanmaekelbergh D; Siebbeles LD; Houtepen AJ
    ACS Nano; 2014 Jul; 8(7):7067-77. PubMed ID: 24883930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.