BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 23176215)

  • 1. Redox control of cardiovascular homeostasis by angiotensin II.
    Sunggip C; Kitajima N; Nishida M
    Curr Pharm Des; 2013; 19(17):3022-32. PubMed ID: 23176215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactive oxygen species derived from NADPH oxidase 1 and mitochondria mediate angiotensin II-induced smooth muscle cell senescence.
    Tsai IC; Pan ZC; Cheng HP; Liu CH; Lin BT; Jiang MJ
    J Mol Cell Cardiol; 2016 Sep; 98():18-27. PubMed ID: 27381955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of Angiotensin II receptor signaling by cysteine modification of NF-κB.
    Nishida M; Kitajima N; Saiki S; Nakaya M; Kurose H
    Nitric Oxide; 2011 Aug; 25(2):112-7. PubMed ID: 21078404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NADPH oxidase contributes to angiotensin II signaling in the nucleus tractus solitarius.
    Wang G; Anrather J; Huang J; Speth RC; Pickel VM; Iadecola C
    J Neurosci; 2004 Jun; 24(24):5516-24. PubMed ID: 15201324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Angiotensin-(1-7) counteracts angiotensin II-induced dysfunction in cerebral endothelial cells via modulating Nox2/ROS and PI3K/NO pathways.
    Xiao X; Zhang C; Ma X; Miao H; Wang J; Liu L; Chen S; Zeng R; Chen Y; Bihl JC
    Exp Cell Res; 2015 Aug; 336(1):58-65. PubMed ID: 26101159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Angiotensin II, NADPH oxidase, and redox signaling in the vasculature.
    Nguyen Dinh Cat A; Montezano AC; Burger D; Touyz RM
    Antioxid Redox Signal; 2013 Oct; 19(10):1110-20. PubMed ID: 22530599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Angiotensin-generated reactive oxygen species in brain and pathogenesis of cardiovascular diseases.
    Chan SH; Chan JY
    Antioxid Redox Signal; 2013 Oct; 19(10):1074-84. PubMed ID: 22429119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Therapeutic interventions to renin-angiotensin-aldosterone system, and vascular redox state.
    Koumallos N; Nteliopoulos G; Paschalis A; Dimarakis I; Yonan N
    Recent Pat Cardiovasc Drug Discov; 2011 May; 6(2):115-22. PubMed ID: 21595630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox-dependent MAP kinase signaling by Ang II in vascular smooth muscle cells: role of receptor tyrosine kinase transactivation.
    Touyz RM; Cruzado M; Tabet F; Yao G; Salomon S; Schiffrin EL
    Can J Physiol Pharmacol; 2003 Feb; 81(2):159-67. PubMed ID: 12710530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A century old renin-angiotensin system still grows with endless possibilities: AT1 receptor signaling cascades in cardiovascular physiopathology.
    Balakumar P; Jagadeesh G
    Cell Signal; 2014 Oct; 26(10):2147-60. PubMed ID: 25007996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of the renin-angiotensin system on cardiac energy metabolism in heart failure.
    Mori J; Zhang L; Oudit GY; Lopaschuk GD
    J Mol Cell Cardiol; 2013 Oct; 63():98-106. PubMed ID: 23886814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crucial role of renin-angiotensin system in the pathogenesis of atherosclerosis.
    Sata M; Fukuda D
    J Med Invest; 2010 Feb; 57(1-2):12-25. PubMed ID: 20299739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Angiotensin Regulation of Vascular Homeostasis: Exploring the Role of ROS and RAS Blockers.
    Koumallos N; Sigala E; Milas T; Baikoussis NG; Aragiannis D; Sideris S; Tsioufis K
    Int J Mol Sci; 2023 Jul; 24(15):. PubMed ID: 37569484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Angiotensin II impairs neurovascular coupling in neocortex through NADPH oxidase-derived radicals.
    Kazama K; Anrather J; Zhou P; Girouard H; Frys K; Milner TA; Iadecola C
    Circ Res; 2004 Nov; 95(10):1019-26. PubMed ID: 15499027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactive oxygen species and angiotensin II signaling in vascular cells -- implications in cardiovascular disease.
    Touyz RM
    Braz J Med Biol Res; 2004 Aug; 37(8):1263-73. PubMed ID: 15273829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox modification of caveolar proteins in the cardiovascular system- role in cellular signalling and disease.
    Bubb KJ; Birgisdottir AB; Tang O; Hansen T; Figtree GA
    Free Radic Biol Med; 2017 Aug; 109():61-74. PubMed ID: 28188926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Angiotensin II induced proteolytic cleavage of myocardial ACE2 is mediated by TACE/ADAM-17: a positive feedback mechanism in the RAS.
    Patel VB; Clarke N; Wang Z; Fan D; Parajuli N; Basu R; Putko B; Kassiri Z; Turner AJ; Oudit GY
    J Mol Cell Cardiol; 2014 Jan; 66():167-76. PubMed ID: 24332999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Endothelin 1 and angiotensin II in preeeclampsia].
    Ariza AC; Bobadilla NA; Halhali A
    Rev Invest Clin; 2007; 59(1):48-56. PubMed ID: 17569300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Angiotensin II blockade: a strategy to slow ageing by protecting mitochondria?
    de Cavanagh EM; Inserra F; Ferder L
    Cardiovasc Res; 2011 Jan; 89(1):31-40. PubMed ID: 20819950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bartter/Gitelman syndromes as a model to study systemic oxidative stress in humans.
    Maiolino G; Azzolini M; Rossi GP; Davis PA; Calò LA
    Free Radic Biol Med; 2015 Nov; 88(Pt A):51-8. PubMed ID: 25770663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.