These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 23176460)

  • 1. Operational and technical considerations for microbial electrosynthesis.
    Desloover J; Arends JB; Hennebel T; Rabaey K
    Biochem Soc Trans; 2012 Dec; 40(6):1233-8. PubMed ID: 23176460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does bioelectrochemical cell configuration and anode potential affect biofilm response?
    Kumar A; Katuri K; Lens P; Leech D
    Biochem Soc Trans; 2012 Dec; 40(6):1308-14. PubMed ID: 23176473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells.
    Huang L; Regan JM; Quan X
    Bioresour Technol; 2011 Jan; 102(1):316-23. PubMed ID: 20634062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbiome for the Electrosynthesis of Chemicals from Carbon Dioxide.
    LaBelle EV; Marshall CW; May HD
    Acc Chem Res; 2020 Jan; 53(1):62-71. PubMed ID: 31809012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical communication between microbial cells and electrodes via osmium redox systems.
    Hasan K; Patil SA; Leech D; Hägerhäll C; Gorton L
    Biochem Soc Trans; 2012 Dec; 40(6):1330-5. PubMed ID: 23176477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purposely Designed Hierarchical Porous Electrodes for High Rate Microbial Electrosynthesis of Acetate from Carbon Dioxide.
    Flexer V; Jourdin L
    Acc Chem Res; 2020 Feb; 53(2):311-321. PubMed ID: 31990521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cathodes as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are involved?
    Rosenbaum M; Aulenta F; Villano M; Angenent LT
    Bioresour Technol; 2011 Jan; 102(1):324-33. PubMed ID: 20688515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The utility of Shewanella japonica for microbial fuel cells.
    Biffinger JC; Fitzgerald LA; Ray R; Little BJ; Lizewski SE; Petersen ER; Ringeisen BR; Sanders WC; Sheehan PE; Pietron JJ; Baldwin JW; Nadeau LJ; Johnson GR; Ribbens M; Finkel SE; Nealson KH
    Bioresour Technol; 2011 Jan; 102(1):290-7. PubMed ID: 20663660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The microbe electric: conversion of organic matter to electricity.
    Lovley DR
    Curr Opin Biotechnol; 2008 Dec; 19(6):564-71. PubMed ID: 19000760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On electron transport through Geobacter biofilms.
    Bond DR; Strycharz-Glaven SM; Tender LM; Torres CI
    ChemSusChem; 2012 Jun; 5(6):1099-105. PubMed ID: 22615023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Forming microbial anodes under delayed polarisation modifies the electron transfer network and decreases the polarisation time required.
    Pocaznoi D; Erable B; Etcheverry L; Delia ML; Bergel A
    Bioresour Technol; 2012 Jun; 114():334-41. PubMed ID: 22483348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell.
    Kim BH; Park HS; Kim HJ; Kim GT; Chang IS; Lee J; Phung NT
    Appl Microbiol Biotechnol; 2004 Feb; 63(6):672-81. PubMed ID: 12908088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective microbial electrosynthesis of methane by a pure culture of a marine lithoautotrophic archaeon.
    Beese-Vasbender PF; Grote JP; Garrelfs J; Stratmann M; Mayrhofer KJ
    Bioelectrochemistry; 2015 Apr; 102():50-5. PubMed ID: 25486337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The diversity of techniques to study electrochemically active biofilms highlights the need for standardization.
    Harnisch F; Rabaey K
    ChemSusChem; 2012 Jun; 5(6):1027-38. PubMed ID: 22615099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cathodic biofilms - A prerequisite for microbial electrosynthesis.
    Vassilev I; Dessì P; Puig S; Kokko M
    Bioresour Technol; 2022 Mar; 348():126788. PubMed ID: 35104648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells.
    Chaudhuri SK; Lovley DR
    Nat Biotechnol; 2003 Oct; 21(10):1229-32. PubMed ID: 12960964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode.
    Bajracharya S; ter Heijne A; Dominguez Benetton X; Vanbroekhoven K; Buisman CJ; Strik DP; Pant D
    Bioresour Technol; 2015 Nov; 195():14-24. PubMed ID: 26066971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A framework for modeling electroactive microbial biofilms performing direct electron transfer.
    Korth B; Rosa LF; Harnisch F; Picioreanu C
    Bioelectrochemistry; 2015 Dec; 106(Pt A):194-206. PubMed ID: 25921352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency.
    Schröder U
    Phys Chem Chem Phys; 2007 Jun; 9(21):2619-29. PubMed ID: 17627307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sulfide-driven microbial electrosynthesis.
    Gong Y; Ebrahim A; Feist AM; Embree M; Zhang T; Lovley D; Zengler K
    Environ Sci Technol; 2013 Jan; 47(1):568-73. PubMed ID: 23252645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.