These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 23176477)

  • 1. Electrochemical communication between microbial cells and electrodes via osmium redox systems.
    Hasan K; Patil SA; Leech D; Hägerhäll C; Gorton L
    Biochem Soc Trans; 2012 Dec; 40(6):1330-5. PubMed ID: 23176477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does bioelectrochemical cell configuration and anode potential affect biofilm response?
    Kumar A; Katuri K; Lens P; Leech D
    Biochem Soc Trans; 2012 Dec; 40(6):1308-14. PubMed ID: 23176473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron transfer between genetically modified Hansenula polymorpha yeast cells and electrode surfaces via Os-complex modified redox polymers.
    Shkil H; Schulte A; Guschin DA; Schuhmann W
    Chemphyschem; 2011 Mar; 12(4):806-13. PubMed ID: 21337486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroelectrochemical analyses of electroactive microbial biofilms.
    Millo D
    Biochem Soc Trans; 2012 Dec; 40(6):1284-90. PubMed ID: 23176469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical communication between heterotrophically grown Rhodobacter capsulatus with electrodes mediated by an osmium redox polymer.
    Hasan K; Patil SA; Górecki K; Leech D; Hägerhäll C; Gorton L
    Bioelectrochemistry; 2013 Oct; 93():30-6. PubMed ID: 22749669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nature of the Surface-Exposed Cytochrome-Electrode Interactions in Electroactive Biofilms of Desulfuromonas acetoxidans.
    Alves A; Ly HK; Hildebrandt P; Louro RO; Millo D
    J Phys Chem B; 2015 Jun; 119(25):7968-74. PubMed ID: 26039558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mediated electron transfer in glucose oxidising enzyme electrodes for application to biofuel cells: recent progress and perspectives.
    Kavanagh P; Leech D
    Phys Chem Chem Phys; 2013 Apr; 15(14):4859-69. PubMed ID: 23443881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photo-electrochemical communication between cyanobacteria (Leptolyngbia sp.) and osmium redox polymer modified electrodes.
    Hasan K; Bekir Yildiz H; Sperling E; Conghaile PÓ; Packer MA; Leech D; Hägerhäll C; Gorton L
    Phys Chem Chem Phys; 2014 Dec; 16(45):24676-80. PubMed ID: 25325401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new synthesis route for Os-complex modified redox polymers for potential biofuel cell applications.
    Pöller S; Beyl Y; Vivekananthan J; Guschin DA; Schuhmann W
    Bioelectrochemistry; 2012 Oct; 87():178-84. PubMed ID: 22209452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclic voltammetric analysis of the electron transfer of Shewanella oneidensis MR-1 and nanofilament and cytochrome knock-out mutants.
    Carmona-Martinez AA; Harnisch F; Fitzgerald LA; Biffinger JC; Ringeisen BR; Schröder U
    Bioelectrochemistry; 2011 Jun; 81(2):74-80. PubMed ID: 21402501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strategies for "wiring" redox-active proteins to electrodes and applications in biosensors, biofuel cells, and nanotechnology.
    Nöll T; Nöll G
    Chem Soc Rev; 2011 Jul; 40(7):3564-76. PubMed ID: 21509355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Operational and technical considerations for microbial electrosynthesis.
    Desloover J; Arends JB; Hennebel T; Rabaey K
    Biochem Soc Trans; 2012 Dec; 40(6):1233-8. PubMed ID: 23176460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On-Line Raman Spectroscopic Study of Cytochromes' Redox State of Biofilms in Microbial Fuel Cells.
    Krige A; Sjöblom M; Ramser K; Christakopoulos P; Rova U
    Molecules; 2019 Feb; 24(3):. PubMed ID: 30759821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioelectrochemical interface engineering: toward the fabrication of electrochemical biosensors, biofuel cells, and self-powered logic biosensors.
    Zhou M; Dong S
    Acc Chem Res; 2011 Nov; 44(11):1232-43. PubMed ID: 21812435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Layer-by-layer self-assembled osmium polymer-mediated laccase oxygen cathodes for biofuel cells: the role of hydrogen peroxide.
    Scodeller P; Carballo R; Szamocki R; Levin L; Forchiassin F; Calvo EJ
    J Am Chem Soc; 2010 Aug; 132(32):11132-40. PubMed ID: 20698679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multistep hopping and extracellular charge transfer in microbial redox chains.
    Pirbadian S; El-Naggar MY
    Phys Chem Chem Phys; 2012 Oct; 14(40):13802-8. PubMed ID: 22797729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of redox polymer and enzyme co-immobilization on carbon electrodes to provide membrane-less glucose/O2 enzymatic fuel cells with improved power output and stability.
    Rengaraj S; Kavanagh P; Leech D
    Biosens Bioelectron; 2011 Dec; 30(1):294-9. PubMed ID: 22005596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wiring microbial biofilms to the electrode by osmium redox polymer for the performance enhancement of microbial fuel cells.
    Yuan Y; Shin H; Kang C; Kim S
    Bioelectrochemistry; 2016 Apr; 108():8-12. PubMed ID: 26599210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzyme Immobilization and Mediation with Osmium Redox Polymers.
    VandeZande GR; Olvany JM; Rutherford JL; Rasmussen M
    Methods Mol Biol; 2017; 1504():165-179. PubMed ID: 27770421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of performance and stability of biocatalytic redox films constructed with different copper oxygenases and osmium-based redox polymers.
    Jenkins PA; Boland S; Kavanagh P; Leech D
    Bioelectrochemistry; 2009 Sep; 76(1-2):162-8. PubMed ID: 19481981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.