These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 23176520)

  • 1. In silico design of targeted SRM-based experiments.
    Nahnsen S; Kohlbacher O
    BMC Bioinformatics; 2012; 13 Suppl 16(Suppl 16):S8. PubMed ID: 23176520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATAQS: A computational software tool for high throughput transition optimization and validation for selected reaction monitoring mass spectrometry.
    Brusniak MY; Kwok ST; Christiansen M; Campbell D; Reiter L; Picotti P; Kusebauch U; Ramos H; Deutsch EW; Chen J; Moritz RL; Aebersold R
    BMC Bioinformatics; 2011 Mar; 12():78. PubMed ID: 21414234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational approaches to selected reaction monitoring assay design.
    Bessant C; Fan J
    Methods Mol Biol; 2013; 1007():219-35. PubMed ID: 23666728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. OpenMS and TOPP: open source software for LC-MS data analysis.
    Reinert K; Kohlbacher O
    Methods Mol Biol; 2010; 604():201-11. PubMed ID: 20013373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A computational tool to detect and avoid redundancy in selected reaction monitoring.
    Röst H; Malmström L; Aebersold R
    Mol Cell Proteomics; 2012 Aug; 11(8):540-9. PubMed ID: 22535207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving SRM assay development: a global comparison between triple quadrupole, ion trap, and higher energy CID peptide fragmentation spectra.
    de Graaf EL; Altelaar AF; van Breukelen B; Mohammed S; Heck AJ
    J Proteome Res; 2011 Sep; 10(9):4334-41. PubMed ID: 21726076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expediting the development of targeted SRM assays: using data from shotgun proteomics to automate method development.
    Prakash A; Tomazela DM; Frewen B; Maclean B; Merrihew G; Peterman S; Maccoss MJ
    J Proteome Res; 2009 Jun; 8(6):2733-9. PubMed ID: 19326923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal de novo design of MRM experiments for rapid assay development in targeted proteomics.
    Bertsch A; Jung S; Zerck A; Pfeifer N; Nahnsen S; Henneges C; Nordheim A; Kohlbacher O
    J Proteome Res; 2010 May; 9(5):2696-704. PubMed ID: 20201589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. OpenMS and TOPP: open source software for LC-MS data analysis.
    Bertsch A; Gröpl C; Reinert K; Kohlbacher O
    Methods Mol Biol; 2011; 696():353-67. PubMed ID: 21063960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using Data Independent Acquisition (DIA) to Model High-responding Peptides for Targeted Proteomics Experiments.
    Searle BC; Egertson JD; Bollinger JG; Stergachis AB; MacCoss MJ
    Mol Cell Proteomics; 2015 Sep; 14(9):2331-40. PubMed ID: 26100116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein significance analysis in selected reaction monitoring (SRM) measurements.
    Chang CY; Picotti P; Hüttenhain R; Heinzelmann-Schwarz V; Jovanovic M; Aebersold R; Vitek O
    Mol Cell Proteomics; 2012 Apr; 11(4):M111.014662. PubMed ID: 22190732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapidly Assessing the Quality of Targeted Proteomics Experiments through Monitoring Stable-Isotope Labeled Standards.
    Gibbons BC; Fillmore TL; Gao Y; Moore RJ; Liu T; Nakayasu ES; Metz TO; Payne SH
    J Proteome Res; 2019 Feb; 18(2):694-699. PubMed ID: 30525668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TOPP--the OpenMS proteomics pipeline.
    Kohlbacher O; Reinert K; Gröpl C; Lange E; Pfeifer N; Schulz-Trieglaff O; Sturm M
    Bioinformatics; 2007 Jan; 23(2):e191-7. PubMed ID: 17237091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated SWATH Data Analysis Using Targeted Extraction of Ion Chromatograms.
    Röst HL; Aebersold R; Schubert OT
    Methods Mol Biol; 2017; 1550():289-307. PubMed ID: 28188537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated selected reaction monitoring data analysis workflow for large-scale targeted proteomic studies.
    Surinova S; Hüttenhain R; Chang CY; Espona L; Vitek O; Aebersold R
    Nat Protoc; 2013 Aug; 8(8):1602-19. PubMed ID: 23887179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selected reaction monitoring mass spectrometry: a methodology overview.
    Ebhardt HA
    Methods Mol Biol; 2014; 1072():209-22. PubMed ID: 24136525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeted Proteomics as a Tool for Quantifying Urine-Based Biomarkers.
    Mohan SV; Nayakanti DS; Sathe G; George IA; Gowda H; Kumar P
    Methods Mol Biol; 2020; 2051():277-295. PubMed ID: 31552634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeted Feature Detection for Data-Dependent Shotgun Proteomics.
    Weisser H; Choudhary JS
    J Proteome Res; 2017 Aug; 16(8):2964-2974. PubMed ID: 28673088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinformatics challenges in mass spectrometry-driven proteomics.
    Martens L
    Methods Mol Biol; 2011; 753():359-71. PubMed ID: 21604135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methods and algorithms for quantitative proteomics by mass spectrometry.
    Matthiesen R; Carvalho AS
    Methods Mol Biol; 2013; 1007():183-217. PubMed ID: 23666727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.