These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 23176522)

  • 1. Biologically relevant chemical space navigator: from patent and structure-activity relationship analysis to library acquisition and design.
    Rabal O; Oyarzabal J
    J Chem Inf Model; 2012 Dec; 52(12):3123-37. PubMed ID: 23176522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using novel descriptor accounting for ligand-receptor interactions to define and visually explore biologically relevant chemical space.
    Rabal O; Oyarzabal J
    J Chem Inf Model; 2012 May; 52(5):1086-102. PubMed ID: 22486368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting key example compounds in competitors' patent applications using structural information alone.
    Hattori K; Wakabayashi H; Tamaki K
    J Chem Inf Model; 2008 Jan; 48(1):135-42. PubMed ID: 18177028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinase patent space visualization using chemical replacements.
    Southall NT; Ajay
    J Med Chem; 2006 Mar; 49(6):2103-9. PubMed ID: 16539399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Charting, navigating, and populating natural product chemical space for drug discovery.
    Lachance H; Wetzel S; Kumar K; Waldmann H
    J Med Chem; 2012 Jul; 55(13):5989-6001. PubMed ID: 22537178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intuitive patent Markush structure visualization tool for medicinal chemists.
    Deng W; Berthel SJ; So WV
    J Chem Inf Model; 2011 Mar; 51(3):511-20. PubMed ID: 21381694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Do medicinal chemists learn from activity cliffs? A systematic evaluation of cliff progression in evolving compound data sets.
    Dimova D; Heikamp K; Stumpfe D; Bajorath J
    J Med Chem; 2013 Apr; 56(8):3339-45. PubMed ID: 23527828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioactivity-guided navigation of chemical space.
    Bon RS; Waldmann H
    Acc Chem Res; 2010 Aug; 43(8):1103-14. PubMed ID: 20481515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ChemGPS-NP: tuned for navigation in biologically relevant chemical space.
    Larsson J; Gottfries J; Muresan S; Backlund A
    J Nat Prod; 2007 May; 70(5):789-94. PubMed ID: 17439280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combinatorial library design from reagent pharmacophore fingerprints.
    Chen H; Engkvist O; Blomberg N
    Methods Mol Biol; 2011; 685():135-52. PubMed ID: 20981522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of methods based on diversity and similarity for molecule selection and the analysis of drug discovery data.
    Lam RL; Welch WJ
    Methods Mol Biol; 2004; 275():301-16. PubMed ID: 15141118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Progress in visual representations of chemical space.
    Osolodkin DI; Radchenko EV; Orlov AA; Voronkov AE; Palyulin VA; Zefirov NS
    Expert Opin Drug Discov; 2015; 10(9):959-73. PubMed ID: 26094796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploiting structural information in patent specifications for key compound prediction.
    Tyrchan C; Boström J; Giordanetto F; Winter J; Muresan S
    J Chem Inf Model; 2012 Jun; 52(6):1480-9. PubMed ID: 22639789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Similarity metrics for ligands reflecting the similarity of the target proteins.
    Schuffenhauer A; Floersheim P; Acklin P; Jacoby E
    J Chem Inf Comput Sci; 2003; 43(2):391-405. PubMed ID: 12653501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From activity cliffs to activity ridges: informative data structures for SAR analysis.
    Vogt M; Huang Y; Bajorath J
    J Chem Inf Model; 2011 Aug; 51(8):1848-56. PubMed ID: 21761918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From activity cliffs to target-specific scoring models and pharmacophore hypotheses.
    Seebeck B; Wagener M; Rarey M
    ChemMedChem; 2011 Sep; 6(9):1630-9, 1533. PubMed ID: 21751401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SAR maps: a new SAR visualization technique for medicinal chemists.
    Agrafiotis DK; Shemanarev M; Connolly PJ; Farnum M; Lobanov VS
    J Med Chem; 2007 Nov; 50(24):5926-37. PubMed ID: 17958407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Representation of multi-target activity landscapes through target pair-based compound encoding in self-organizing maps.
    Iyer P; Bajorath J
    Chem Biol Drug Des; 2011 Nov; 78(5):778-86. PubMed ID: 21895984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating Pharmacological Similarity by Charting Chemical Space.
    Buonfiglio R; Engkvist O; Várkonyi P; Henz A; Vikeved E; Backlund A; Kogej T
    J Chem Inf Model; 2015 Nov; 55(11):2375-90. PubMed ID: 26484706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.