These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
329 related articles for article (PubMed ID: 23176677)
1. Utilizing ITS1 and ITS2 to study environmental fungal diversity using pyrosequencing. Monard C; Gantner S; Stenlid J FEMS Microbiol Ecol; 2013 Apr; 84(1):165-75. PubMed ID: 23176677 [TBL] [Abstract][Full Text] [Related]
2. New Primers for Discovering Fungal Diversity Using Nuclear Large Ribosomal DNA. Asemaninejad A; Weerasuriya N; Gloor GB; Lindo Z; Thorn RG PLoS One; 2016; 11(7):e0159043. PubMed ID: 27391306 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of the ribosomal DNA internal transcribed spacer (ITS), specifically ITS1 and ITS2, for the analysis of fungal diversity by deep sequencing. Yang RH; Su JH; Shang JJ; Wu YY; Li Y; Bao DP; Yao YJ PLoS One; 2018; 13(10):e0206428. PubMed ID: 30359454 [TBL] [Abstract][Full Text] [Related]
4. ITS-1 versus ITS-2 pyrosequencing: a comparison of fungal populations in truffle grounds. Mello A; Napoli C; Murat C; Morin E; Marceddu G; Bonfante P Mycologia; 2011; 103(6):1184-93. PubMed ID: 21700633 [TBL] [Abstract][Full Text] [Related]
5. ITS1 versus ITS2 as DNA metabarcodes for fungi. Blaalid R; Kumar S; Nilsson RH; Abarenkov K; Kirk PM; Kauserud H Mol Ecol Resour; 2013 Mar; 13(2):218-24. PubMed ID: 23350562 [TBL] [Abstract][Full Text] [Related]
6. Comparison and validation of some ITS primer pairs useful for fungal metabarcoding studies. Op De Beeck M; Lievens B; Busschaert P; Declerck S; Vangronsveld J; Colpaert JV PLoS One; 2014; 9(6):e97629. PubMed ID: 24933453 [TBL] [Abstract][Full Text] [Related]
7. Culturomics and Amplicon-based Metagenomic Approaches for the Study of Fungal Population in Human Gut Microbiota. Hamad I; Ranque S; Azhar EI; Yasir M; Jiman-Fatani AA; Tissot-Dupont H; Raoult D; Bittar F Sci Rep; 2017 Dec; 7(1):16788. PubMed ID: 29196717 [TBL] [Abstract][Full Text] [Related]
8. Metagenomic analysis of soil fungal communities on Ulleungdo and Dokdo Islands. Nam YJ; Kim H; Lee JH; Yoon H; Kim JG J Gen Appl Microbiol; 2015; 61(3):67-74. PubMed ID: 26227909 [TBL] [Abstract][Full Text] [Related]
9. Ignored sediment fungal populations in water supply reservoirs are revealed by quantitative PCR and 454 pyrosequencing. Zhang H; Huang T; Chen S BMC Microbiol; 2015 Feb; 15():44. PubMed ID: 25886005 [TBL] [Abstract][Full Text] [Related]
10. Impact of seasonal changes on fungal diversity of a semi-arid ecosystem revealed by 454 pyrosequencing. Vargas-Gastélum L; Romero-Olivares AL; Escalante AE; Rocha-Olivares A; Brizuela C; Riquelme M FEMS Microbiol Ecol; 2015 May; 91(5):. PubMed ID: 25877341 [TBL] [Abstract][Full Text] [Related]
11. ITS1: a DNA barcode better than ITS2 in eukaryotes? Wang XC; Liu C; Huang L; Bengtsson-Palme J; Chen H; Zhang JH; Cai D; Li JQ Mol Ecol Resour; 2015 May; 15(3):573-86. PubMed ID: 25187125 [TBL] [Abstract][Full Text] [Related]
12. Effectiveness of ITS and sub-regions as DNA barcode markers for the identification of Basidiomycota (Fungi). Badotti F; de Oliveira FS; Garcia CF; Vaz AB; Fonseca PL; Nahum LA; Oliveira G; Góes-Neto A BMC Microbiol; 2017 Feb; 17(1):42. PubMed ID: 28228107 [TBL] [Abstract][Full Text] [Related]
13. Introducing ribosomal tandem repeat barcoding for fungi. Wurzbacher C; Larsson E; Bengtsson-Palme J; Van den Wyngaert S; Svantesson S; Kristiansson E; Kagami M; Nilsson RH Mol Ecol Resour; 2019 Jan; 19(1):118-127. PubMed ID: 30240145 [TBL] [Abstract][Full Text] [Related]
14. ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. Bellemain E; Carlsen T; Brochmann C; Coissac E; Taberlet P; Kauserud H BMC Microbiol; 2010 Jul; 10():189. PubMed ID: 20618939 [TBL] [Abstract][Full Text] [Related]
15. Vertical distribution of fungal communities in tallgrass prairie soil. Jumpponen A; Jones KL; Blair J Mycologia; 2010; 102(5):1027-41. PubMed ID: 20943503 [TBL] [Abstract][Full Text] [Related]
16. Assessment of soil fungal communities using pyrosequencing. Lim YW; Kim BK; Kim C; Jung HS; Kim BS; Lee JH; Chun J J Microbiol; 2010 Jun; 48(3):284-9. PubMed ID: 20571944 [TBL] [Abstract][Full Text] [Related]
17. Potential bias of fungal 18S rDNA and internal transcribed spacer polymerase chain reaction primers for estimating fungal biodiversity in soil. Anderson IC; Campbell CD; Prosser JI Environ Microbiol; 2003 Jan; 5(1):36-47. PubMed ID: 12542711 [TBL] [Abstract][Full Text] [Related]
18. 454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. Buée M; Reich M; Murat C; Morin E; Nilsson RH; Uroz S; Martin F New Phytol; 2009 Oct; 184(2):449-456. PubMed ID: 19703112 [TBL] [Abstract][Full Text] [Related]
19. Exploring the accuracy of amplicon-based internal transcribed spacer markers for a fungal community. Li S; Deng Y; Wang Z; Zhang Z; Kong X; Zhou W; Yi Y; Qu Y Mol Ecol Resour; 2020 Jan; 20(1):170-184. PubMed ID: 31599091 [TBL] [Abstract][Full Text] [Related]
20. Fungal succession in an in-vessel composting system characterized using 454 pyrosequencing. Langarica-Fuentes A; Zafar U; Heyworth A; Brown T; Fox G; Robson GD FEMS Microbiol Ecol; 2014 May; 88(2):296-308. PubMed ID: 24490666 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]