These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 23177206)

  • 21. Bioinformatics challenges in de novo transcriptome assembly using short read sequences in the absence of a reference genome sequence.
    Góngora-Castillo E; Buell CR
    Nat Prod Rep; 2013 Apr; 30(4):490-500. PubMed ID: 23377493
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetic basis of pearl millet adaptation along an environmental gradient investigated by a combination of genome scan and association mapping.
    Mariac C; Jehin L; Saïdou AA; Thuillet AC; Couderc M; Sire P; Jugdé H; Adam H; Bezançon G; Pham JL; Vigouroux Y
    Mol Ecol; 2011 Jan; 20(1):80-91. PubMed ID: 21050293
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Research progress of plant population genomics based on high-throughput sequencing.
    Wang YS
    Yi Chuan; 2016 Aug; 38(8):688-99. PubMed ID: 27531607
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hidden genetic nature of epigenetic natural variation in plants.
    Pecinka A; Abdelsamad A; Vu GT
    Trends Plant Sci; 2013 Nov; 18(11):625-32. PubMed ID: 23953885
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Linking genotypes to phenotypes and fitness: how mechanistic biology can inform molecular ecology.
    Dalziel AC; Rogers SM; Schulte PM
    Mol Ecol; 2009 Dec; 18(24):4997-5017. PubMed ID: 19912534
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Epigenetic contribution to stress adaptation in plants.
    Mirouze M; Paszkowski J
    Curr Opin Plant Biol; 2011 Jun; 14(3):267-74. PubMed ID: 21450514
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genetic analysis of abiotic stress tolerance in crops.
    Roy SJ; Tucker EJ; Tester M
    Curr Opin Plant Biol; 2011 Jun; 14(3):232-9. PubMed ID: 21478049
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genome sequencing and population genomics in non-model organisms.
    Ellegren H
    Trends Ecol Evol; 2014 Jan; 29(1):51-63. PubMed ID: 24139972
    [TBL] [Abstract][Full Text] [Related]  

  • 29. What can next generation sequencing do for you? Next generation sequencing as a valuable tool in plant research.
    Bräutigam A; Gowik U
    Plant Biol (Stuttg); 2010 Nov; 12(6):831-41. PubMed ID: 21040298
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent progress using high-throughput sequencing technologies in plant molecular breeding.
    Gao Q; Yue G; Li W; Wang J; Xu J; Yin Y
    J Integr Plant Biol; 2012 Apr; 54(4):215-27. PubMed ID: 22409591
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crop genome sequencing: lessons and rationales.
    Feuillet C; Leach JE; Rogers J; Schnable PS; Eversole K
    Trends Plant Sci; 2011 Feb; 16(2):77-88. PubMed ID: 21081278
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The population genomics of plant adaptation.
    Siol M; Wright SI; Barrett SC
    New Phytol; 2010 Oct; 188(2):313-32. PubMed ID: 20696011
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ecological genomics of natural plant populations: the Israeli perspective.
    Nevo E
    Methods Mol Biol; 2009; 513():321-44. PubMed ID: 19347652
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assembly free comparative genomics of short-read sequence data discovers the needles in the haystack.
    Cannon CH; Kua CS; Zhang D; Harting JR
    Mol Ecol; 2010 Mar; 19 Suppl 1():147-61. PubMed ID: 20331777
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A general pipeline for the development of anchor markers for comparative genomics in plants.
    Fredslund J; Madsen LH; Hougaard BK; Nielsen AM; Bertioli D; Sandal N; Stougaard J; Schauser L
    BMC Genomics; 2006 Aug; 7():207. PubMed ID: 16907970
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genome sequencing approaches and successes.
    Imelfort M; Batley J; Grimmond S; Edwards D
    Methods Mol Biol; 2009; 513():345-58. PubMed ID: 19347651
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Experimental evolution of the model eukaryote Saccharomyces cerevisiae yields insight into the molecular mechanisms underlying adaptation.
    Voordeckers K; Verstrepen KJ
    Curr Opin Microbiol; 2015 Dec; 28():1-9. PubMed ID: 26202939
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Convergence and divergence during the adaptation to similar environments by an Australian groundsel.
    Roda F; Liu H; Wilkinson MJ; Walter GM; James ME; Bernal DM; Melo MC; Lowe A; Rieseberg LH; Prentis P; Ortiz-Barrientos D
    Evolution; 2013 Sep; 67(9):2515-29. PubMed ID: 24033164
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Conifer genomics and adaptation: at the crossroads of genetic diversity and genome function.
    Prunier J; Verta JP; MacKay JJ
    New Phytol; 2016 Jan; 209(1):44-62. PubMed ID: 26206592
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Extending genomics to natural communities and ecosystems.
    Whitham TG; Difazio SP; Schweitzer JA; Shuster SM; Allan GJ; Bailey JK; Woolbright SA
    Science; 2008 Apr; 320(5875):492-5. PubMed ID: 18436780
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.