These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 23177244)
1. A novel process for recovery of iron, titanium, and vanadium from titanomagnetite concentrates: NaOH molten salt roasting and water leaching processes. Chen D; Zhao L; Liu Y; Qi T; Wang J; Wang L J Hazard Mater; 2013 Jan; 244-245():588-95. PubMed ID: 23177244 [TBL] [Abstract][Full Text] [Related]
2. Efficient Recovery of Vanadium and Titanium from Domestic Titanomagnetite Concentrate Using Molten Salt Roasting and Water Leaching. Trinh HB; Kim S; Lee J; Oh S Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959513 [TBL] [Abstract][Full Text] [Related]
3. A novel roasting process to extract vanadium and chromium from high chromium vanadium slag using a NaOH-NaNO Teng A; Xue X J Hazard Mater; 2019 Nov; 379():120805. PubMed ID: 31238217 [TBL] [Abstract][Full Text] [Related]
4. An extraction process to recover vanadium from low-grade vanadium-bearing titanomagnetite. Chen D; Zhao H; Hu G; Qi T; Yu H; Zhang G; Wang L; Wang W J Hazard Mater; 2015 Aug; 294():35-40. PubMed ID: 25840036 [TBL] [Abstract][Full Text] [Related]
5. Leaching characteristics of vanadium in mine tailings and soils near a vanadium titanomagnetite mining site. Yang J; Tang Y; Yang K; Rouff AA; Elzinga EJ; Huang JH J Hazard Mater; 2014 Jan; 264():498-504. PubMed ID: 24268537 [TBL] [Abstract][Full Text] [Related]
6. An active dealkalization of red mud with roasting and water leaching. Zhu X; Li W; Guan X J Hazard Mater; 2015 Apr; 286():85-91. PubMed ID: 25559862 [TBL] [Abstract][Full Text] [Related]
7. Stepwise extraction of valuable components from red mud based on reductive roasting with sodium salts. Li G; Liu M; Rao M; Jiang T; Zhuang J; Zhang Y J Hazard Mater; 2014 Sep; 280():774-80. PubMed ID: 25240647 [TBL] [Abstract][Full Text] [Related]
8. Effect of NaOH on the vitrification process of waste Ni-Cr sludge. Chou IC; Wang YF; Chang CP; Wang CT; Kuo YM J Hazard Mater; 2011 Jan; 185(2-3):1522-7. PubMed ID: 21112144 [TBL] [Abstract][Full Text] [Related]
9. Multistage utilization process for the gradient-recovery of V, Fe, and Ti from vanadium-bearing converter slag. Xiang J; Huang Q; Lv X; Bai C J Hazard Mater; 2017 Aug; 336():1-7. PubMed ID: 28463734 [TBL] [Abstract][Full Text] [Related]
10. Submerged-arc welding slags: characterization and leaching strategies for the removal of aluminum and titanium. Annoni R; Souza PS; Petrániková M; Miskufova A; Havlík T; Mansur MB J Hazard Mater; 2013 Jan; 244-245():335-41. PubMed ID: 23274794 [TBL] [Abstract][Full Text] [Related]
11. Recovery of iron from cyanide tailings with reduction roasting-water leaching followed by magnetic separation. Zhang Y; Li H; Yu X J Hazard Mater; 2012 Apr; 213-214():167-74. PubMed ID: 22333161 [TBL] [Abstract][Full Text] [Related]
12. Experimental design and process analysis for acidic leaching of metal-rich glass wastes. Tuncuk A; Ciftci H; Akcil A; Ognyanova A; Vegliò F Waste Manag Res; 2010 May; 28(5):445-54. PubMed ID: 19748938 [TBL] [Abstract][Full Text] [Related]
13. An efficient utilization of chromium-containing vanadium tailings: Extraction of chromium by soda roasting-water leaching and preparation of chromium oxide. Wen J; Jiang T; Gao H; Zhou W; Xu Y; Zheng X; Liu Y; Xue X J Environ Manage; 2019 Aug; 244():119-126. PubMed ID: 31112876 [TBL] [Abstract][Full Text] [Related]
14. Selective recovery of chromium from ferronickel slag via alkaline roasting followed by water leaching. Gu F; Zhang Y; Peng Z; Su Z; Tang H; Tian W; Liang G; Lee J; Rao M; Li G; Jiang T J Hazard Mater; 2019 Jul; 374():83-91. PubMed ID: 30981016 [TBL] [Abstract][Full Text] [Related]
15. Selective leaching of vanadium over iron from vanadium slag. Zhang X; Fang D; Song S; Cheng G; Xue X J Hazard Mater; 2019 Apr; 368():300-307. PubMed ID: 30685718 [TBL] [Abstract][Full Text] [Related]
16. Recovery of copper and cobalt from ancient slag. Bulut G Waste Manag Res; 2006 Apr; 24(2):118-24. PubMed ID: 16634226 [TBL] [Abstract][Full Text] [Related]
17. Innovative method for minimization of waste containing Fe, Mn and Ti during comprehensive utilization of vanadium slag. Liu S; Wang L; Chou KC Waste Manag; 2021 May; 127():179-188. PubMed ID: 33945936 [TBL] [Abstract][Full Text] [Related]
18. Properties of vanadium-loaded iron sorbent after alkali regeneration. Khalid MK; Leiviskä T; Tanskanen J Water Sci Technol; 2017 Nov; 76(9-10):2672-2679. PubMed ID: 29168707 [TBL] [Abstract][Full Text] [Related]
19. A novel process for preparation of titanium dioxide from Ti-bearing electric furnace slag: NH Zheng F; Guo Y; Qiu G; Chen F; Wang S; Sui Y; Jiang T; Yang L J Hazard Mater; 2018 Feb; 344():490-498. PubMed ID: 29096260 [TBL] [Abstract][Full Text] [Related]
20. Titanium-Enriched Slag Prepared by Atmospheric Hydrochloric Acid Leaching of Mechanically Activated Vanadium Titanomagnetite Concentrates. Wu EH; Lin YH; Liu J; Wang Z; Liu JC; Yin GL; Li JW; Cheng XK; Jia YL Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832138 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]