BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 23177965)

  • 1. NMDA receptors control cue-outcome selectivity and plasticity of orbitofrontal firing patterns during associative stimulus-reward learning.
    van Wingerden M; Vinck M; Tijms V; Ferreira IR; Jonker AJ; Pennartz CM
    Neuron; 2012 Nov; 76(4):813-25. PubMed ID: 23177965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theta-band phase locking of orbitofrontal neurons during reward expectancy.
    van Wingerden M; Vinck M; Lankelma J; Pennartz CM
    J Neurosci; 2010 May; 30(20):7078-87. PubMed ID: 20484650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Orbitofrontal and anterior cingulate cortex neurons selectively process cocaine-associated environmental cues in the rhesus monkey.
    Baeg EH; Jackson ME; Jedema HP; Bradberry CW
    J Neurosci; 2009 Sep; 29(37):11619-27. PubMed ID: 19759309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orbitofrontal Cortex Signals Expected Outcomes with Predictive Codes When Stable Contingencies Promote the Integration of Reward History.
    Riceberg JS; Shapiro ML
    J Neurosci; 2017 Feb; 37(8):2010-2021. PubMed ID: 28115481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning-associated gamma-band phase-locking of action-outcome selective neurons in orbitofrontal cortex.
    van Wingerden M; Vinck M; Lankelma JV; Pennartz CM
    J Neurosci; 2010 Jul; 30(30):10025-38. PubMed ID: 20668187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preference for Cocaine is Represented in the Orbitofrontal Cortex by an Increased Proportion of Cocaine Use-Coding Neurons.
    Guillem K; Ahmed SH
    Cereb Cortex; 2018 Mar; 28(3):819-832. PubMed ID: 28057724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-cell and population coding of expected reward probability in the orbitofrontal cortex of the rat.
    van Duuren E; van der Plasse G; Lankelma J; Joosten RN; Feenstra MG; Pennartz CM
    J Neurosci; 2009 Jul; 29(28):8965-76. PubMed ID: 19605634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homeostatic presynaptic suppression of neuronal network bursts.
    Cohen D; Segal M
    J Neurophysiol; 2009 Apr; 101(4):2077-88. PubMed ID: 19193770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Medial Orbitofrontal Neurons Preferentially Signal Cues Predicting Changes in Reward during Unblocking.
    Lopatina N; McDannald MA; Styer CV; Peterson JF; Sadacca BF; Cheer JF; Schoenbaum G
    J Neurosci; 2016 Aug; 36(32):8416-24. PubMed ID: 27511013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Operant learning requires NMDA-receptor activation in the anterior cingulate cortex and dorsomedial striatum, but not in the orbitofrontal cortex.
    McKee BL; Kelley AE; Moser HR; Andrzejewski ME
    Behav Neurosci; 2010 Aug; 124(4):500-9. PubMed ID: 20695649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMDA receptors are essential for the acquisition, but not expression, of conditional fear and associative spike firing in the lateral amygdala.
    Goosens KA; Maren S
    Eur J Neurosci; 2004 Jul; 20(2):537-48. PubMed ID: 15233763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orbitofrontal neurons acquire responses to 'valueless' Pavlovian cues during unblocking.
    McDannald MA; Esber GR; Wegener MA; Wied HM; Liu TL; Stalnaker TA; Jones JL; Trageser J; Schoenbaum G
    Elife; 2014 Jul; 3():e02653. PubMed ID: 25037263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recruiting extrasynaptic NMDA receptors augments synaptic signaling.
    Harris AZ; Pettit DL
    J Neurophysiol; 2008 Feb; 99(2):524-33. PubMed ID: 18057106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orbitofrontal cortical neurons encode expectation-driven initiation of reward-seeking.
    Moorman DE; Aston-Jones G
    J Neurosci; 2014 Jul; 34(31):10234-46. PubMed ID: 25080585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Background firing rates of orbitofrontal neurons reflect specific characteristics of operant sessions and modulate phasic responses to reward-associated cues and behavior.
    Kravitz AV; Peoples LL
    J Neurosci; 2008 Jan; 28(4):1009-18. PubMed ID: 18216208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blockade of NMDA receptors in prelimbic cortex induces an enduring amnesia for odor-reward associative learning.
    Tronel S; Sara SJ
    J Neurosci; 2003 Jul; 23(13):5472-6. PubMed ID: 12843246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasticity of neuronal firing in deep layers of the medial prefrontal cortex in rats engaged in operant conditioning.
    Mulder AB; Nordquist R; Orgüt O; Pennartz CM
    Prog Brain Res; 2000; 126():287-301. PubMed ID: 11105653
    [No Abstract]   [Full Text] [Related]  

  • 18. Reward prediction based on stimulus categorization in primate lateral prefrontal cortex.
    Pan X; Sawa K; Tsuda I; Tsukada M; Sakagami M
    Nat Neurosci; 2008 Jun; 11(6):703-12. PubMed ID: 18500338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Medial orbitofrontal cortex modulates associative learning between environmental cues and reward probability.
    Hall-McMaster S; Millar J; Ruan M; Ward RD
    Behav Neurosci; 2017 Feb; 131(1):1-10. PubMed ID: 28004955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correspondence of cue activity to reward activity in the macaque orbitofrontal cortex.
    Hosokawa T; Kato K; Inoue M; Mikami A
    Neurosci Lett; 2005 Dec; 389(3):146-51. PubMed ID: 16118036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.